Лучевая диагностика (рентген, рентгеновская компьютерная томография, магнитно-резонансная томография). Виды лучевой диагностики заболеваний и как она проводится Методы лучевой диагностики показания и противопоказания

Лучевая диагностика массово применяется как при соматических заболеваниях, так и в стоматологии. В РФ ежегодно выполняется более 115 миллионов рентгенологических исследований, более 70 миллионов ультразвуковых и более 3-х миллионов радионуклидных исследований.

Технология лучевой диагностики является практической дисциплиной, изучающей воздействия разных типов излучения на человеческий организм. Ее цель – выявлять скрытые заболевания, путем исследования морфологии и функций здоровых органов, а также имеющих патологии, включая все системы жизнедеятельности человека.

Плюсы и минусы

Преимущества:

  • способность наблюдать работу внутренних органов и систем жизнедеятельности человека;
  • анализировать, делать выводы и подбирать необходимый метод терапии на основе диагностики.

Недостаток: угроза нежелательного радиационного облучения пациента и медицинского персонала.

Методы и методики

Лучевая диагностика подразделяется на следующие отрасли:

  • рентгенологию (сюда же входит компьютерная томография);
  • радионуклидную диагностику;
  • магнитно-резонансную томографию;
  • медицинскую термографию;
  • интервенционную радиологию.

Рентгенологическое исследование, в основе которого лежит метод создания рентгеновского снимка внутренних органов человека подразделяется на:

  • рентгенографию;
  • телерентгенографию;
  • электрорентгенографию;
  • рентгеноскопию;
  • флюорографию;
  • дигитальную рентгенографию;
  • линейную томографию.

В данном исследовании важно провести качественную оценку рентгенограммы больного и правильно рассчитать дозовую нагрузку излучения на пациента.

Ультразвуковое исследование, в ходе которого формируется ультразвуковое изображение, включает анализ морфологии и систем жизнедеятельности человека. Помогает выявить воспаления, патологии и другие отклонения в организме исследуемого.

Подразделяется на:

  • одномерную эхографию;
  • двухмерную эхографию;
  • доплерографию;
  • дуплексную сонографию.

Исследование на основе компьютерной томографии, в ходе которого с помощью сканера формируется КТ-изображение, включает такие принципы сканирования:

  • последовательный;
  • спиральный;
  • динамический.

Магнитно-резонансное исследование (МРТ) включает следующие методики:

  • МР-ангиографию;
  • МР-урографию;
  • МР-холангиографию.

Радионуклидное исследование предполагает применение радиоактивных изотопов, радионуклидов и подразделяется на:

  • радиографию;
  • радиометрию;
  • радионуклидную визуализацию.

Фотогалерея

Интервенционная радиология Медицинская термография Радионуклидная диагностика

Рентгенодиагностика

Рентгенодиагностика распознает заболевания и повреждения в органах и системах жизнедеятельности человека опираясь на изучение рентгеновских снимков. Метод позволяет обнаружить развитие заболеваний, определяя степени поражения органов. Предоставляет информацию об общем состоянии пациентов.

В медицине рентгеноскопию используют для исследования состояния органов, процессы работы. Дает информацию о расположении внутренних органов и помогает выявить патологические процессы происходящие в них.

Также следует отметить следующие методы лучевой диагностики:

  1. Рентгенография помогает получить фиксированное изображение любых частей тела, используя рентгеновское излучение. Она исследует работу легких, сердца, диафрагмы и костно — суставного аппарата.
  2. Флюорография делается на основе фотографирования рентгеновских изображений (используют фотопленку меньших размеров). Таким образом обследуют: легкие, бронхи, молочные железы и придаточные пазухи носа.
  3. Томография представляет собой рентгенологическую съемку послойно. Применяют исследуя легкие, печень, почки, кости и суставы.
  4. Реография исследует кровообращение, измеряя пульсовые волны, вызванные сопротивлением стенок сосудов под воздействием электрических токов. Ее используют чтобы диагностировать сосудистые нарушения в головном мозге, а также проверить легкие, сердце, печень, конечности.

Радионуклидная диагностика

Предполагает регистрацию излучений искусственно введенного в организм радиоактивного вещества (радиофармпрепараты). Способствует изучению человеческого организма в целом, а также его клеточного метаболизма. Является важным этапом выявления онкологических заболеваний. Определяет активность клеток пораженных раком, процессы болезни, помогая оценивать методы лечения рака, предотвращая рецидивы заболевания.

Методика позволяет вовремя обнаруживать формирование злокачественных новообразований на ранних стадиях. Способствует уменьшению процента смертности от рака, сокращая число случаев рецидива у больных онкологией.

Ультразвуковая диагностика

Ультразвуковой диагностикой (УЗИ) называют процесс основанный на малоинвазивном методе исследований человеческого организма. Его суть состоит в особенностях звуковой волны, ее способности отражаться от поверхностей внутренних органов. Относится к современным и наиболее продвинутым методам исследования.

Особенности ультразвукового исследования:

  • высокая степень безопасности;
  • высокая степень информативности;
  • высокий процент обнаружения патологического отклонения на ранней стадии развития;
  • отсутствие лучевых нагрузок;
  • диагностика детей с самого раннего возраста;
  • способность проводить исследования неограниченное количество раз.

Магнитно-резонансная томография

Метод основывается на свойствах атомного ядра. Оказываясь внутри магнитного поля атомы излучают энергию имеющую определенную частоту. В медицинском исследовании зачастую применяют резонанс излучения ядра атома водорода. Степень интенсивности сигнала напрямую связано с процентным соотношением воды в тканях исследуемого органа. Компьютер трансформирует резонансное излучение в высококонтрастный томографический снимок.

МРТ выделяется на фоне других методик, способностью предоставлять информацию не только структурных изменений, но и локального химического состояния организма. Этот тип исследования не инвазивен и несвязан с применением ионизирующего облучения.

Возможности МРТ:

  • позволяет исследовать анатомические, физиологические и биохимические особенности сердца;
  • помогает вовремя распознать сосудистые аневризмы;
  • предоставляет информацию о процессах кровотока, состоянии крупных сосудов.

Минусы МРТ:

  • высокая стоимость аппаратуры;
  • отсутствие возможности обследования пациентов с имплантатами, которые нарушают работу магнитного поля.

Термография

Метод включает регистрацию видимых изображений теплового поля в человеческом теле, излучающего инфракрасный импульс, который может быть считан непосредственно. Или показан на экране компьютера в виде теплового образа. Полученную таким путем картинку называют термограммой.

Термографию отличает высокая точность измерений. Она дает возможность определять разность температур в организме человека до 0,09%. Эта разность возникает в результате перемен в кровообращении внутри тканей тела. При низкой температуре можно говорить о нарушении кровотока. Высокая температура – симптом воспалительного процесса в организме.

СВЧ-термометрия

Радиотермометрией (СВЧ-термометрией) называется процесс измерения температур в тканях и внутри органов тела на основе их собственного излучения. Врачи производят измерения температуры внутри тканевого столба, на определенной глубине при помощи микроволновых радиометров. Когда установлена температура кожи в конкретном отделе, далее вычисляется температура глубины столба. То же самое происходит при регистрации температуры волн разной длины.

Эффективность метода заключается в том, что температура глубинной ткани в основном стабильна, однако быстро изменяется при воздействии медикаментозными средствами. Допустим если применять сосудорасширяющие препараты. На основе полученных данных можно проводить фундаментальные исследования заболеваний сосудов и тканей. И добиться снижения уровня заболеваний.

Магнитно-резонансная спектрометрия

Магнитно-резонансной спектроскопией (МР-спектрометрией) называется не инвазивный метод исследования метаболизма головного мозга. В основе протонной спектрометрии лежит изменение частот резонанса протонных связей, что находятся в составе разных хим. соединений.

МР-спектроскопия используется в процессе исследования онкологий. На основе полученных данных можно прослеживать рост новообразований, с дальнейшим поиском решений по их устранению.

Клиническая практика использует МР-спектрометрию:

  • во время послеоперационного периода;
  • в диагностике роста новообразований;
  • рецидивов опухолей;
  • при лучевом некрозе.

Для сложных случаев спектрометрия является дополнительной опцией при дифференциальных диагностиках вместе с получением перфузийно-взвешеного изображения.

Еще один нюанс при использовании МР-спектрометрии состоит в разграничении выявленного первичного и вторичного поражения тканей. Дифференциация последних с процессами инфекционного воздействия. Особенно важна диагностика абсцессивов в головном мозге на основании диффузионно-взвешенного анализа.

Интервенционная радиология

Лечение при помощи интервенционной радиологии основано на применении катетера и прочего малотравматичного инструментария вместе с использованием локальной анестезии.

По методам воздействия на черезкожные доступы интервенционная радиология разделяется на:

  • сосудистую интервенцию;
  • не сосудистую интервенцию.

ИН-радиология выявляет степень заболевания, проводит пункционные биопсии, опираясь на гистологические исследования. Непосредственно связана с черезкожными безоперационными методами лечения.

Для лечения онкологий с применением интервенционной радиологии используют локальную анестезию. Далее происходит инъекционное проникновение в паховую область через артерии. Затем в новообразование вводят лекарство или изолирующие частицы.

Устранение закупоренности сосудов, всех кроме сердечных проводится при помощи балионной ангеопластики. То же касается лечения аневризм, посредством освобождения вен, осуществляя ввод лекарства через пораженную область. Что в дальнейшем ведет к исчезновению варикозных уплотнений и других новообразований.

Это видео расскажет подробнее о средостении в рентгеновском изображении. Видео снято каналом: Секреты КТ и МРТ.

Виды и применение рентгеноконтрастных препаратов в лучевой диагностике

В ряде случаев необходимо визуализировать анатомические структуры и органы, неразличимые на обзорных рентгенограммах. Для исследования в такой ситуации применяют метод создания искусственного контраста. Для этого, в область, которую необходимо исследовать, вводят специальное вещество, увеличивающее контрастность области на снимке. Подобного рода вещества имеют способность усиленно поглощать или наоборот уменьшать поглощение рентгеновского излучения.

Контрастные вещества разделяют на препараты:

  • спирторастворимые;
  • жирорастворимые;
  • нерастворимые;
  • водорастворимые неионогенные и ионогенные;
  • с большим атомным весом;
  • с малым атомным весом.

Жирорастворимые рентген контрастные препараты создаются на базе растительных масел и используются в диагностике структуры полых органов:

  • бронхов;
  • позвоночного столба;
  • спинного мозга.

Спирторастворимые вещества применяют для исследования:

  • желчных путей;
  • желчного пузыря;
  • внутричерепных каналов;
  • спинномозговых, каналов;
  • лимфатических сосудов (лимфографии).

Нерастворимые препараты создаются на основе бария. Их используют для перорального введения. Обычно с помощью таких препаратов исследуют составляющие пищеварительной системы. Сульфат бария принимают в виде порошка, водянистой суспензии или пасты.

К веществам с малым атомным весом относят уменьшающие поглощение рентгеновских лучей газообразные препараты. Обычно газы вводят для конкурирования рентгеновских лучей в полости тела или полые органы.

Вещества с большим атомным весом поглощают рентгеновское излучение и делятся на:

  • содержащие йод;
  • не содержащие йод.

Водорастворимые вещества вводят внутривенно для лучевых исследований:

В каких случаях показана лучевая диагностика?

Ионизирующее излучение ежедневно используется в больницах и клиниках для проведения диагностических процедур визуализации. Обычно лучевая диагностика используется для назначения точного диагноза, выявления заболевания или травмы.

Назначить исследование вправе только квалифицированный врач. Однако существуют не только диагностические, но и профилактические рекомендации исследования. К примеру, женщинам старше сорока лет рекомендуется проходить профилактическую маммографию не реже, чем раз в два года. В учебных заведениях зачастую требуют ежегодно проходить флюорографию.

Противопоказания

Лучевая диагностика практически не имеет абсолютных противопоказаний. Полный запрет на диагностику возможен в отдельных случаях, если в теле пациента присутствуют металлические предметы (такие как имплантат, клипсы и т. п.). Вторым фактором, при котором процедура недопустима, является наличие кардиостимуляторов.

Относительные запреты на лучевую диагностику включают:

  • беременность пациентки;
  • если пациент младше 14 лет;
  • в теле пациента присутствуют протезированные сердечные клапаны;
  • у пациента психические нарушения;
  • в теле пациента вживлены инсулиновые насосы;
  • пациент испытывает клаустрофобию;
  • необходимо искусственно поддерживать основные функции организма.

Где применяется лучевая диагностика

Лучевую диагностику широко используют для выявления заболеваний в следующих отраслях медицины:

  • педиатрия;
  • стоматология;
  • кардиология;
  • неврология;
  • травматология;
  • ортопедия;
  • урология;
  • гастроэнтерология.

Также лучевую диагностику проводят при:

В педиатрии

Существенным фактором, который может повлиять на результаты медицинского обследования является внедрение своевременной диагностики детских заболеваний.

Из важных факторов, ограничивающих рентгенографические исследования в педиатрии можно выделить:

  • лучевые нагрузки;
  • низкую специфичность;
  • недостаточную разрешающую способность.

Если говорить о важных методиках лучевых исследований, применение которых очень сильно повышает информативность процедуры, стоит выделить компьютерную томографию. Лучше всего в педиатрии использовать ультразвуковое исследование, а также магнитно-резонансную томографию, так как они полностью исключают опасность ионизирующего излучения.

Безопасный метод исследования детей это МРТ, в связи с хорошей возможностью применения тканевого контраста, а также многоплоскостных исследований.

Лучевое исследование детям может назначать только опытный педиатр.

В стоматологии

Нередко в стоматологии используют лучевую диагностику для обследования различных отклонений, к примеру:

  • периодонтита;
  • костных аномалий;
  • деформации зубов.

Чаще всего в челюстно-лицевой диагностике применяют:

  • внеротовую рентгенографию челюстей и зубов;
    ;
  • обзорную рентгенографию.

В кардиологии и неврологии

МСКТ или мультиспиральная компьютерная томография позволяет обследовать не только непосредственно сердце, но и коронарные сосуды.

Данное обследование является наиболее полным и позволяет выявить и своевременно диагностировать широкий спектр заболеваний, например:

  • различные пороки сердца;
  • аортальный стеноз;
  • гипертрофическую кардиопатию;
  • опухоль сердца.

Лучевая диагностика ссс (сердечно-сосудистой системы) позволяет оценить область закрытия просвета сосудов, выявить бляшки.

В неврологии также нашли применение лучевой диагностике. Пациенты с заболеваниями межпозвонковых дисков (грыжи и протрузии) получают более точные диагнозы, благодаря лучевой диагностике.

В травматологии и ортопедии

Наиболее распространённым методом лучевого исследования в травматологии и ортопедии является рентген.

Обследование позволяет выявить:

  • травмы опорно-двигательного аппарата;
  • патологии и изменения в мышечно — скелетной системы и костно-суставной ткани;
  • ревматические процессы.

Наиболее действенные методы лучевой диагностики в травматологии и ортопедии:

  • традиционная рентгенография;
  • рентгенография в двух взаимо-перпендикулярных проекциях;

Заболеваний органов дыхания

Наиболее применяемым методами обследования органов дыхания являются:

Реже применяют рентгеноскопию и линейную томографию.

На сегодняшний день допустима замена флюорографии на низкодозную КТ органов грудной клетки.

Рентгеноскопия при диагностике органов дыхания существенно ограничивается серьёзной лучевой нагрузкой на пациента, меньшей разрешающей способностью. Её проводят исключительно соответственно строгим показаниям, после проведения флюорографии и рентгенографии. Линейную томографию назначают только в случае невозможности провести КТ.

Обследование позволяет исключить или подтвердить такие заболевания, как:

  • хроническая обструктивная болезнь лёгких (ХОБЛ);
  • пневмония;
  • туберкулез.

В гастроэнтерологии

Лучевая диагностика желудочно-кишечного тракта (ЖКТ) проводится, как правило, с использованием рентгеноконтрастных препаратов.

Таким образом могут:

  • диагностировать ряд отклонений (к примеру, трахеопищеводный свищ);
  • осмотреть пищевод;
  • осмотреть двенадцатиперстную кишку.

Иногда специалисты с помощью лучевой диагностики отслеживают и снимают на видео процесс глотания жидкой и твёрдой пищи, чтобы проанализировать и выявить патологии.

В урологии и неврологии

Сонография и УЗИ являются одними из самых распространённых методов обследования мочевыделительной системы. Обычно такие исследования позволяют исключить или диагностировать рак или кисту. Лучевая диагностика помогает визуализировать исследование, даёт больше информации, чем просто общение с больным и пальпация. Процедура занимает немного времени и безболезненна для пациента, при этом позволяет повысить точность диагноза.

При неотложных состояниях

Способом лучевого исследования можно выявить:

  • травматические повреждения печени;
  • гидроторакс;
  • внутримозговые гематомы;
  • выпот в брюшную полость;
  • травмы головы;
  • переломы;
  • кровоизлияния и ишемию головного мозга.

Лучевая диагностика при неотложных состояниях позволяет правильно оценить состояние больного и своевременно провести ревматологические процедуры.

При беременности

С помощью различных процедур возможна диагностика уже у плода.

Благодаря УЗИ и ЦДК есть возможность:

  • выявить различные сосудистые патологии;
  • болезни почек и мочеполовых путей;
  • нарушении развития плода.

На данный момент лишь УЗИ из всех методов лучевой диагностики считается полностью безопасной процедурой при обследовании женщин в период беременности. Чтобы проводить любые другие диагностические исследования беременных, им обязательно иметь соответствующие медицинские показания. И в этом случае – самого факта беременности недостаточно. Если рентген или МРТ на сто процентов не подтверждены медицинскими показаниями, врач вынужден будет искать возможность перенести обследование на период после родов.

Мнение специалистов на этот счет сводится к тому, чтобы исследования КТ, МРТ или рентгеном не проводились в первый триместр беременности. Потому что в это время происходит процесс формирования плода и воздействия любых методов лучевой диагностики на состояние эмбриона до конца неизвестно.

Лучевая диагностика, лучевая терапия - это две составные части радиологии. В современной медицинской практике они используются все шире и чаще. Это можно объяснить их отличной информативностью.

Диагностика лучевая - это практическая дисциплина, которая изучает использование разного рода излучений с целью обнаружения и распознавания большого количества заболеваний. Она помогает изучить морфологию и функции нормальных и пораженных болезнью органов и систем человеческого организма. Существует несколько видов лучевой диагностики, и каждая из них по-своему уникальна и позволяет обнаружить болезни в разных областях организма.

Лучевая диагностика: виды

На сегодняшний день существует несколько методов лучевой диагностики. Каждый из них по-своему хорош, так как позволяет провести исследования в определенной области человеческого организма. Виды лучевой диагностики:

  • Рентгенодиагностика.
  • Радионуклидное исследование.
  • Компьютерная томография.
  • Термография.

Эти методы исследования лучевой диагностики могут позволить выдать данные о состоянии здоровья пациента только в той области, которая ими исследуется. Но существуют и более усовершенствованные методы, которые дают более подробные и обширные результаты.

Современный метод диагностирования

Современная лучевая диагностика - это одна из быстро развивающихся медицинских специальностей. Она непосредственно связана с общим прогрессом физики, математики, вычислительной техники, информатики.

Диагностика лучевая - это наука, применяющая излучения, которые помогают изучать строение и функционирование нормальных и поврежденных болезнями органов и систем человеческого организма с целью проведения профилактики и распознавания заболевания. Подобный метод диагностирования играет важную роль как в обследовании пациентов, так и в радиологических процедурах лечения, которые зависят от информации, полученной во время исследований.

Современные методы лучевой диагностики позволяют с максимальной точностью выявить патологию в конкретном органе и помочь найти лучший способ для ее лечения.

Разновидности диагностики

Инновационные методы диагностирования включают в себя большое количество диагностических визуализаций и отличаются друг от друга физическими принципами получения данных. Но общая сущность всех методик заключается в информации, которую получают путем обработки пропускаемого, испускаемого или отраженного электромагнитного излучения или механических колебаний. В зависимости от того, какие из явлений положены в основу получаемого изображения, диагностика лучевая делится на такие виды исследований:

  • Рентгенодиагностика основывается на умении поглощать тканями рентгеновские лучи.
  • В его основе лежит отражение пучка направленных ультразвуковых волн в тканях по направлению к датчику.
  • Радионуклидное - характеризуется испусканием изотопами, которые накапливаются в тканях.
  • Магнитно-резонансный метод основывается на испускании радиочастотного излучения, которое возникает во время возбуждения непарных ядер атомов в магнитном поле.
  • Исследование инфракрасными лучами - самопроизвольное испускание тканями инфракрасного излучения.

Каждый из этих методов позволяет с большой точностью выявить патологию в органах человека и дает больше шансов на положительный исход лечения. Как диагностика лучевая выявляет патологию в легких, и что с ее помощью можно обнаружить?

Исследование легких

Диффузное поражение легких - это изменения в обоих органах, представляющие собой рассеянные очаги, увеличение ткани в объеме, а в некоторых случаях и объединение двух этих состояний. Благодаря рентгеновскому и компьютерному методам исследований удается определять легочные заболевания.

Только современные методы исследования позволяют быстро и точно установить диагноз и приступить к оперативному лечению в условиях стационара. В наше время современных технологий имеет большое значение лучевая диагностика легких. Поставить диагноз в соответствии с клинической картиной в большинстве случаев очень трудно. Это объясняется тем, что патологии легких сопровождаются сильными болями, острой дыхательной недостаточностью и кровоизлиянием.

Но даже в самых тяжелых случаях на помощь врачам и пациентам приходит неотложная лучевая диагностика.

В каких случаях показано проведение исследования?

Рентгеновский метод диагностики позволяет быстро выявить проблему при возникновении угрожающей жизни пациента ситуации, которая требует неотложного вмешательства. Срочная рентгенодиагностика может быть полезна во многих случаях. Чаще всего ее используют при повреждении костей и суставов, внутренних органов и мягких тканей. Очень опасны для человека травмы головы и шеи, живота и брюшной полости, грудной клетки, позвоночника, тазобедренных и длинных трубчатых костей.

Метод рентгеновского исследования назначают пациенту сразу после того, как будет проведена противошоковая терапия. Осуществлять его можно прямо в приемном отделении, используя передвижной аппарат, или же пациента доставляют в кабинет рентгена.

При травмах шеи и головы проводят обзорную рентгенограмму, при необходимости добавляют специальные снимки отдельных частей черепа. В специализированных учреждениях можно провести скорую ангиографию сосудов мозга.

При травмировании грудной клетки диагностику начинают с обзорной делают с прямого и бокового обзора. При травмах живота и таза нужно проводить обследование с использованием контрастирования.

Также срочное проводят и при других патологиях: острая боль в животе, харканье кровью и кровотечения из пищеварительного тракта. Если данных будет недостаточно для установления точного диагноза, назначают компьютерную томографию.

Редко используют рентгенодиагностику в случаях подозрения на присутствие инородных тел в дыхательных путях или пищеварительном тракте.

При всех видах повреждений и в сложных случаях, возможно, потребуется провести не только компьютерную томографию, но и магнитно-резонансную. Назначить то или иное исследование может только лечащий доктор.

Плюсы лучевой диагностики

Этот метод исследования считают одним из самых эффективных, поэтому, рассматривая его плюсы, хочется выделить такие:

  • Под воздействием лучей опухолевые новообразования уменьшаются, погибает часть раковых клеток, а оставшиеся перестают делиться.
  • Многие сосуды, из которых поступает питание к зарастают.
  • Больше всего положительных моментов заключается в лечении некоторых видов рака: легких, яичников и вилочковой железы.

Но не только положительные стороны есть у данного метода, отрицательные также имеются.

Минусы диагностики лучевой

Большинство врачей считают, каким бы удивительным ни был этот метод исследования, свои отрицательные стороны у него также есть. К ним можно отнести:

  • Побочные эффекты, которые возникают во время терапии.
  • Низкая чувствительность к радиоактивному излучению таких органов, как хрящи, кости, почки и мозг.
  • Максимальная чувствительность эпителия кишечника к данному облучению.

Лучевая диагностика показала хорошие результаты при выявлении патологии, но не каждому пациенту она подходит.

Противопоказания

Не всем больным с раковыми новообразованиями этот метод исследований подходит. Назначают его только в некоторых случаях:

  • Наличие большого количества метастазов.
  • Лучевая болезнь.
  • Врастание раковых корней в крупнейшие сосуды и органы половой системы.
  • Лихорадка.
  • Тяжелейшее состояние пациента с выраженной интоксикацией.
  • Обширное онкологическое поражение.
  • Анемия, лейкопения, а также тромбоцитопения.
  • Распад раковых новообразований с кровотечением.

Заключение

Лучевая диагностика применяется уже несколько лет и показала очень хорошие результаты в быстрой постановке диагнозов, особенно в сложных случаях. Благодаря ее использованию удалось определить диагнозы очень тяжелым больным. Даже несмотря на ее недостатки, других исследований, которые бы давали такие результаты, пока нет. Поэтому можно точно сказать, что в настоящее время лучевая диагностика стоит на первом месте.

Одной из активно развивающихся отраслей современной клинической медицины является лучевая диагностика. Этому способствует постоянный прогресс в области компьютерных технологий и физики. Благодаря высокоинформативным неинвазивным методам обследования, обеспечивающим подробную визуализацию внутренних органов, врачам удается выявлять заболевания на разных стадиях их развития, в том числе и до появления ярко выраженной симптоматики.

Сущность лучевой диагностики

Лучевой диагностикой принято называть отрасль медицины, связанную с применением ионизирующего и неионизирующего излучения с целью обнаружения анатомических и функциональных изменений в организме и выявления врожденных и приобретенных заболеваний. Выделяют такие виды лучевой диагностики:

  • рентгенологическая, подразумевающая использование рентгеновских лучей: рентгеноскопия, рентгенография, компьютерная томография (КТ), флюорография, ангиография;
  • ультразвуковая, связанная с применением ультразвуковых волн: ультразвуковое исследование (УЗИ) внутренних органов в форматах 2D, 3D, 4D, допплерография;
  • магнитно-резонансная, основанная на явлении ядерного магнитного резонанса – способности вещества, содержащего ядра с ненулевым спином и помещенного в магнитное поле, поглощать и излучать электромагнитную энергию: магнитно-резонансная томография (МРТ), магнитно-резонансная спектроскопия (МРС);
  • радиоизотопная, предусматривающая регистрацию излучения, исходящего от радиофармацевтических препаратов, введенных в организм пациента или в биологическую жидкость, содержащуюся в пробирке: сцинтиграфия, сканирование, позитронно-эмиссионная томография (ПЭТ), однофотонная эмиссионная томография (ОФЭКТ), радиометрия, радиография;
  • тепловая, связанная с использованием инфракрасного излучения: термография, тепловая томография.

Современные методы лучевой диагностики позволяют получать плоские и объемные изображения внутренних органов человека, поэтому их называют интраскопическими («intra» – «внутри чего-либо»). Они предоставляют медикам около 90 % информации, необходимой для постановки диагнозов.

В каких случаях противопоказана лучевая диагностика

Исследования такого типа не рекомендуется назначать пациентам, пребывающим в коме и тяжелом состоянии, сочетающемся с лихорадкой (повышенной до 40-41 ̊С температурой тела и ознобом), страдающим от острой печеночной и почечной недостаточности (утраты органами способности в полной мере выполнять свои функции), психических заболеваний, обширных внутренних кровотечений, открытого пневмоторакса (когда воздух во время дыхания свободно циркулирует между легкими и внешней средой через повреждение грудной клетки).

Однако иногда требуется проведение КТ головного мозга по неотложным показаниям, например, пациенту в коме при дифференциальной диагностике инсультов, субдуральных (область между твердой и паутинной мозговыми оболочками) и субарахноидальных (полость между мягкой и паутинной мозговыми оболочками) кровоизлияний.

Все дело в том, что КТ проводится очень быстро, и гораздо лучше «видит» объемы крови внутри черепа.

Это позволяет принять решение о необходимости срочного нейрохирургического вмешательства, а при проведении КТ можно оказывать пациенту реанимационное пособие.

Рентгенологические и радиоизотопные исследования сопровождаются определенным уровнем лучевой нагрузки на организм пациента. Так как доза радиации, хоть и небольшая, способна негативно сказаться на развитии плода, рентгенологическое и радиоизотопное лучевое обследование при беременности противопоказано. Если один из этих видов диагностики назначен женщине в период лактации, ей рекомендуется на 48 часов после процедуры прекратить грудное вскармливание.

Магнитно-резонансные исследования не связаны с радиацией, поэтому разрешены беременным женщинам, но все же их проводят с осторожностью: в ходе процедуры есть риск чрезмерного нагревания околоплодных вод, что может навредить ребенку. То же самое касается и инфракрасной диагностики.

Абсолютным противопоказанием к магнитно-резонансному исследованию является наличие у пациента металлических имплантатов, кардиостимулятора.

Ультразвуковая диагностика противопоказаний не имеет, поэтому разрешена и детям, и беременным. Только больным, у которых имеются повреждения прямой кишки, не рекомендуется проводить трансректальное ультразвуковое исследование (ТРУЗИ).

Где используются лучевые методы обследования

Широкое применение получила лучевая диагностика в неврологии, гастроэнтерологии, кардиологии, ортопедии, отоларингологии, педиатрии и других отраслях медицины. Об особенностях ее использования, в частности, о ведущих инструментальных методах исследования, назначаемых пациентам с целью выявления заболеваний различных органов и их систем, речь пойдет дальше.

Применение лучевой диагностики в терапии

Лучевая диагностика и терапия – тесно связанные друг с другом отрасли медицины. Как свидетельствует статистика, в число проблем, с которыми чаще всего обращаются пациенты к врачам-терапевтам, входят заболевания дыхательной и мочевыводящей систем.

Основным методом первичного обследования органов грудной клетки продолжает оставаться рентгенография.
Это связано с тем, что рентгенологическая лучевая диагностика заболеваний органов дыхания недорогостоящая, быстрая и высокоинформативная.

Независимо от предполагаемого заболевания, сразу делают обзорные снимки в двух проекциях – прямой и боковой во время глубокого вдоха. Оценивают характер затемнения/просветления легочных полей, изменения сосудистого рисунка и корней легких. Дополнительно могут быть выполнены изображения в косой проекции и на выдохе.

Для определения деталей и характера патологического процесса часто назначают рентгенологические исследования с контрастом:

  • бронхографию (контрастирование бронхиального дерева);
  • ангиопульмонографию (контрастное исследование сосудов малого круга кровообращения);
  • плеврографию (контрастирование плевральной полости) и другие методы.

Лучевая диагностика при пневмонии, подозрении на скопление жидкости в плевральной полости или тромбоэмболию (закупорку) легочной артерии, наличие опухолей в зоне средостения и субплевральных отделах легких часто проводится с помощью УЗИ.

Если перечисленные выше способы не позволили обнаружить существенных изменений в легочной ткани, но при этом у пациента наблюдается тревожная симптоматика (одышка, кровохарканье, наличие атипичных клеток в мокроте), назначается КТ легких. Лучевая диагностика туберкулеза легких такого типа позволяет получать объемные послойные изображения тканей и обнаруживать заболевание даже на стадии его зарождения.

Если необходимо исследовать функциональные способности органа (характер вентиляции легких), в том числе и после трансплантации, провести дифференциальную диагностику между добро- и злокачественными новообразованиями, проверить легкие на наличие метастазов рака другого органа, проводится радиоизотопная диагностика (сцинтиграфия, ПЭТ или используются другие методы).

В задачи службы лучевой диагностики, функционирующей при местных и региональных департаментах охраны здоровья, входит контроль соблюдения медицинским персоналом стандартов исследований. Это необходимо, так как при нарушении порядка и периодичности проведения диагностических процедур чрезмерное облучение может стать причиной ожогов на теле, поспособствовать развитию злокачественных новообразований и уродств у детей в следующем поколении.

Если радиоизотопные и рентгенологические исследования выполняются правильно, дозы излучаемой радиации незначительные, неспособные вызывать нарушения в работе организма взрослого человека. Инновационное цифровое оборудование, которое пришло на смену старым рентгеновским аппаратам, позволило существенно снизить уровень лучевой нагрузки. К примеру, доза облучения при маммографии варьируется в диапазоне от 0,2 до 0,4 мЗв (миллизиверта), при рентгене органов грудной клетки – от 0,5 до 1,5 мЗв, при КТ головного мозга – от 3 до 5 мЗв.

Максимально допустимая для человека доза облучения составляет 150 мЗв в год.

Применение рентгеноконтрастных веществ в лучевой диагностике помогает защитить зоны тела, которые не исследуются, от облучения. С этой целью перед рентгеном на пациента надевают свинцовый фартук, галстук. Чтобы радиофармацевтический препарат, введенный в организм перед радиоизотопной диагностикой, не накапливался и быстрее выводился вместе с мочой, больному рекомендуют пить много воды.

Подводя итоги

В современной медицине лучевая диагностика в неотложных состояниях, при выявлении острых и хронических заболеваний органов, обнаружении опухолевых процессов играет ведущую роль. Благодаря интенсивному развитию компьютерных технологий удается постоянно совершенствовать диагностические методики, делая их более безопасными для человеческого организма.

Методическая разработка № 2

к практическому занятию по лучевой диагностике для студентов 3 курса лечебного факультета

Тема: Основные методы лучевой диагностики

Выполнила: интерн Пекшева М.С.


Основные методы лучевой диагностики:

1. Методы на основе рентгеновского излучения:

· Флюорография

· Традиционная рентгенография, рентгеноскопия

· Рентгеновская компьютерная томография

· Ангиография (рентгеноконтрастные исследования)

2. Методы на основе ультразвука:

· Общее ультразвуковое исследование

· Эхокардиография

· Доплерография

3. Методы, основанные на эффекте ЯМР:

· МР-спектроскопия

4. Методы, основанные на использовании радионуклидных препаратов

· Радионуклидная диагностика

· Позитронно-эмиссионная томография

· Радиоиммунологическое исследование in vitro

5. Инвазивные процедуры в лечении и диагностике, проводимые под контролем лучевых методов исследования:

· Интервенционная радиология.

Свойства рентгеновских лучей:

· Способны проникать через тела и предметы, которые поглощают или отражают (т.е. не пропускают) видимые световые лучи.

· Как и видимый свет могут создавать на светочувствительном материале (фото- или рентгеновской пленке) скрытое изображение, которое после проявления становится видимым

· Вызывают флюоресценцию (свечение) ряда химических соединений используемых в рентгеноскопических экранах

· Обладают высокой энергией и способны вызывать распад нейтральных атомов на + и – заряженные частицы (ионизирующее излучение).

Традиционная рентгенография .

Рентгенография (рентгеновская съемка) - способ рентгенологического исследования, при котором фиксированное рентгеновское изображение объекта получают на твердом носителе, в подавляющем большинстве случаев на рентгеновской пленке. В цифровых рентгеновских аппаратах это изображение может быть зафиксировано на бумаге, в магнитной или магнитно-оптической памяти, получено на экране дисплея.

Рентгеновская трубка представляет собой вакуумный стеклянный сосуд, в концы которого впаяны два электрода - катод и анод. Последний выполнен в виде тонкой вольфрамовой спирали, вокруг которой при ее нагревании образуется облако свободных электронов (термоэлектронная эмиссия). Под действием высокого напряжения, приложенного к полюсам рентгеновской трубки, они разгоняются и фокусируются на аноде. Последний вращается с огромной скоростью - до 10 тыс. оборотов в 1 мин, чтобы поток электронов не попадал в одну точку и не вызвал расплавления анода из-за его перегрева. В результате торможения электронов на аноде часть их кинетической энергии превращается в электромагнитное излучение.

В состав типового рентгенодиагностического аппарата входят питающее устройство, излучатель (рентгеновская трубка), устройство для коллимации пучка, рентгеноэкспонометр и приемники излучения.

На рентгенограммах можно получить изображение любой части тела. Некоторые органы хорошо различимы на снимках благодаря естественной контрастности (кости, сердце, легкие). Другие органы достаточно четко отображаются только после их искусственного контрастирования (бронхи, сосуды, желчные протоки, полости сердца, желудок, кишечник). В любом случае рентгенологическая картина формируется из светлых и темных участков. Почернение рентгеновской пленки, как и фотопленки, происходит вследствие восстановления металлического серебра в ее экспонированном эмульсионном слое. Для этого пленку подвергают химической и физической обработке: проявляют, фиксируют, промывают, сушат. В современных рентгеновских кабинетах весь процесс обработки пленки автоматизирован благодаря наличию проявочных машин. Следует помнить, что рентгеновский снимок является негативом по отношению к изображению, видимому на флюоресцентном экране при просвечивании, поэтому прозрачные для рентгеновских лучей участки тела на рентгенограммах получаются темными («затемнения»), а более плотные - светлыми («просветления»).

Показания к рентгенографии весьма широки, но в каждом конкретном случае должны быть обоснованы, так как рентгенологическое исследование сопряжено с лучевой нагрузкой. Относительными противопоказаниями служат крайне тяжелое состояние или сильное возбуждение больного, а также острые состояния, при которых требуется экстренная хирургическая помощь (например, кровотечение из крупного сосуда, открытый пневмоторакс).

Методу рентгенографии присущи следующие достоинства:

· метод довольно прост при выполнении и широко применяется;

· рентгеновский снимок - объективный документ, который может длительно храниться;

· сопоставление особенностей изображения на повторных снимках, выполненных в различные сроки, позволяет изучить динамику возможных изменений патологического процесса;

· относительная малая лучевая нагрузка (по сравнению с режимом просвечивания) на больного.

Недостатки рентгенографии



· сложность оценки функции органа.

· Наличие ионизирующего излучения, способного оказать вредное воздействие на исследуемый организм.

· Информативность классической рентгенографии значительно ниже таких современных методов медицинской визуализации, как КТ, МРТ и др. Обычные рентгеновские изображения отражают проекционное наслоение сложных анатомических структур, то есть их суммационную рентгеновскую тень, в отличие от послойных серий изображений, получаемых современными томографическими методами.

· Без применения контрастирующих веществ рентгенография мало информативна для анализа изменений в мягких тканях.

Рентгеноскопия – метод получение рентгеновского изображения на светящемся экране.

В современных условиях применение флюоресцентного экрана не обосновано в связи с его малой светимостью, что вынуждает проводить исследования в хорошо затемненном помещении и после длительной адаптации исследователя к темноте (10-15 минут) для различения малоинтенсивного изображения. Вместо классической рентгеноскопии применяется рентгенотелевизионное просвечивание, при котором рентгеновские лучи попадают на УРИ (усилитель рентгеновского изображения), в состав последнего входит ЭОП (электронно-оптический преобразователь). Получаемое изображение выводится на экран монитора. Вывод изображения на экран монитора не требует световой адаптации исследователя, а также затемненного помещения. В дополнение, возможна дополнительная обработка изображения и его регистрация на видеопленке или памяти аппарата.

Преимущества:

· Методика рентгеноскопии проста и экономична, позволяет исследовать больного в различных проекциях и положениях (многоосевое и полипозиционное исследование), оценить анатомо-морфологические и функциональные особенности изучаемого органа.

· Главным преимуществом перед рентгенографией является факт исследования в реальном масштабе времени. Это позволяет оценить не только структуру органа, но и его смещаемость, сократимость или растяжимость, прохождение контрастного вещества, наполняемость.

· Рентгеноскопия позволяет контролировать проведение некоторых инструментальных процедур - постановка катетеров, ангиопластика (см. ангиография), фистулография.

Вместе с тем, для метода характерны определенные недостатки:

· значительная лучевая нагрузка на больного, величина которой находится в прямой зависимости от размеров изучаемого поля, продолжительности исследования и ряда других факторов; относительно низкая разрешающая способность

· необходимость специального обустройства рентген-кабинета (его расположения по отношению к другим отделениям, улице и т.д)

· необходимость использования защитных устройств (фартуки, ширмы)

Цифровые технологии в рентгеноскопии можно разделить на:

Полнокадровый метод

Этот метод характеризуется получением проекции полного участка исследуемого объекта на рентгеночувствительный приёмник (пленка или матрица) размера близкого к размеру участка. Главным недостатком метода является рассеянное рентгеновское излучение. При первичном облучении всего участка объекта (например, тело человека) часть лучей поглощается телом, а часть рассеивается в стороны, при этом дополнительно засвечивает участки, поглотившие первоначально прошедшие рентгеновские лучом. Тем самым уменьшается разрешающая способность, образуются участки с засветкой проецируемых точек. В итоге получается рентгеновское изображение с уменьшением диапазона яркостей, контрастности и разрешающей способности изображения. При полнокадровом исследовании участка тела одновременно облучается весь участок. Попытки уменьшить величину вторичного рассеянного облучения применением радиографического растра приводит к частичному поглощению рентгеновских лучей, но и увеличению интенсивности источника, увеличению дозировки облучения.[править]

Сканирующий метод

Однострочный сканирующий метод: Наиболее перспективным является сканирующий метод получения рентгеновского изображения. То есть рентгеновское изображение получают движущимся с постоянной скоростью определенным пучком рентгеновских лучей. Изображение фиксируется построчно (однострочный метод) узкой линейной рентгеночувствительной матрицей и передаётся в компьютер. При этом в сотни и более раз уменьшается дозировка облучения, изображения получаются практически без потерь диапазона яркости, контрастности и, главное, объёмной (пространственной) разрешающей способности.

Многострочный сканирующий метод: В отличие от однострочного сканирующего метода, многострочный наиболее эффективен. При однострочном методе сканирования из-за минимальной величины размера пучка рентгеновского луча (1-2мм), ширины однострочной матрицы 100мкм, наличием разного рода вибраций, люфтов аппаратуры, получаются дополнительные повторные облучения. Применив многострочную технологию сканирующего метода, удалось в сотни раз уменьшить вторичное рассеянное облучение и во столько же раз снизить интенсивность рентгеновского луча. Одновременно улучшены все прочие показатели получаемого рентгеновского изображения: диапазон яркости, контраст и разрешение.

Рентгеновская флюорография - представляет крупнокадровое фотографирование изображения с рентгеновского экрана (формат кадра 70x70 мм, 100x100 мм, 110x110 мм). Метод предназначен для проведения массовых профилактических исследований органов грудной клетки. Достаточно высокое разрешение изображения крупноформатных флюорограмм и меньшая затратность позволяют также использовать метод для исследования больных в условиях поликлиники или стационара.

Цифровая рентгенография : (МЦРУ)

основанная на прямом преобразовании энергии рентгеновских фотонов в свободные электроны. Подобная трансформация происходит при действии рентгеновского пучка, прошедшего через объект, на пластины из аморфного селена или аморфного полукристаллического силикона. По ряду соображений такой метод рентгенографии пока используют только для исследования грудной клетки. Независимо от вида цифровой рентгенографии окончательное изображение при ней сохраняется на различного рода носителях либо в виде твердой копии (воспроизводится с помощью мультиформатной камеры на специальной фотопленке), либо с помощью лазерного принтера на писчей бумаге.

К достоинствам цифровой рентгенографии относятся

· высокое качествоизображения,

· возможность сохранять изображения на магнитных носителях со всеми вытекающими из этого последствиями: удобство хранения, возможность создания упорядоченных архивов с оперативным доступом к данным и передачи изображения на расстояния - как внутри больницы, так и за ее пределы.

К недостаткам помимо обще-рентгенологических (обустройство и расположение кабинета), относится высокая стоимость оборудования.

Линейная томография:

Томография (от греч. tomos - слой) - метод послойного рентгенологического исследования.

Эффект томографии достигается благодаря непрерывному движению во время съемки двух из трех компонентов рентгеновской системы излучатель-пациент-пленка. Чаще всего перемещаются излучатель и пленка, в то время как пациент остается неподвижным. При этом излучатель и пленка двигаются по дуге, прямой линии или более сложной траектории, но обязательно в противоположных направлениях. При таком перемещении изображение большинства деталей на рентгенограмме оказывается нечетким, размазанным, а резким получается изображение только тех образований, которые находятся на уровне центра вращения системы излучатель-пленка. Показания к томографии достаточно широки, особенно в учреждениях, в которых нет компьютерного томографа. Наиболее широкое распространение томография получила в пульмонологии. На томограммах получают изображение трахеи и крупных бронхов, не прибегая к их искусственному контрастированию. Томография легких очень ценна для выявления полостей распада на участках инфильтрации или в опухолях, а также для обнаружения гиперплазии внутригрудных лимфатических узлов. Она также дает возможность изучить структуру околоносовых пазух, гортани, получить изображение отдельных деталей такого сложного объекта, каким является позвоночник.

В основе качества изображения лежат:

· Характеристики рентгеновского излучения (mV, mA, время, доза (ЭЭД), однородность)

· Геометрия (размер фокусного пятна, фокусное расстояние, размер объекта)

· Тип устройства (экранно-пленочный аппарат, запоминающий люминофор, система детекторов)

Непосредственно определяют качество изображения:

· Динамический диапазон

· Контрастная чувствительность

· Соотношение сигнал-шум

· Пространственное разрешение

Косвенно влияют на качество изображения:

· Физиология

· Психология

· Воображение\фантазия

· Опыт\информированность

Классификация рентгеновских детекторов:

1. Экранно-пленочные

2. Цифровые

· На основе запоминающих люминофоров

· На основе УРИ

· На основе газоразрядных камер

· На основе полупроводников (матрицы)

На фосф пластинах: специальные кассеты на которые можно делать много изображений (считывание изображений с пластины на монитор, пластина хранит изображение до 6 часов)

Компьютерная томография - это послойное рентгенологическое исследование, основанное на компьютерной реконструкции изображения, получаемого при круговом сканировании объекта узким пучком рентгеновского излучения.

Узкий пучок рентгеновского излучения сканирует человеческое тело по окружности. Проходя через ткани, излучение ослабляется соответственно плотности и атомному составу этих тканей. По другую сторону от пациента установлена круговая система датчиков рентгеновского излучения, каждый из которых (а их количество может достигать нескольких тысяч) преобразует энергию излучения в электрические сигналы. После усиления эти сигналы преобразуются в цифровой код, который поступает в память компьютера. Зафиксированные сигналы отражают степень ослабления пучка рентгеновских лучей (и, следовательно, степень поглощения излучения) в каком либо одном направлении. Вращаясь вокруг пациента, рентгеновский излучатель «просматривает» его тело в разных ракурсах, в общей сложности под углом 360°. К концу вращения излучателя в памяти компьютера оказываются зафиксированными все сигналы от всех датчиков. Продолжительность вращения излучателя в современных томографах очень небольшая, всего 1-3 с, что позволяет изучать движущиеся объекты. При использовании стандартных программ компьютер реконструирует внутреннюю структуру объекта. В результате этого получается изображение тонкого слоя изучаемого органа, обычно порядка нескольких миллиметров, которое выводится на дисплей, и врач обрабатывает его применительно к поставленной перед ним задаче: может масштабировать изображение (увеличивать и уменьшать), выделять интересующие его области (зоны интереса), определять размеры органа, число или характер патологических образований. Попутно определяют плотность ткани на отдельных участках, которую измеряют в условных единицах - единицах Хаунсфилда (HU). За нулевую отметку принята плотность воды. Плотность кости составляет +1000 HU, плотность воздуха равна -1000 HU. Все остальные ткани человеческого тела занимают промежуточное положение (обычно от 0 до 200-300 HU). Естественно, такой диапазон плотностей отобразить ни на дисплее, ни на фотопленке нельзя, поэтому врач выбирает ограниченный диапазон на шкале Хаунсфилда - «окно», размеры которого обычно не превышают нескольких десятков единиц Хаунсфилда. Параметры окна (ширина и расположение на всей шкале Хаунсфилда) всегда обозначают на компьютерных томограммах. После такой обработки изображение помещают в долговременную память компьютера или сбрасывают на твердый носитель - фотопленку.

Бурно развивается спиральная томография, при которой излучатель движется по спирали по отношению к телу пациента и захватывает, таким образом, за короткий промежуток времени, измеряемый несколькими секундами, определенный объем тела, который в последующем может быть представлен отдельными дискретными слоями.

Спиральная томография инициировала создание новых способов визуализации - компьютерной ангиографии, трехмерного (объемного) изображения органов и, наконец, виртуальной эндоскопии.

Поколения компьютерных томографов: от первого до четвёртого

Прогресс КТ томографов напрямую связан с увеличением количества детекторов, то есть с увеличением числа одновременно собираемых проекций.

1. Аппарат 1-го поколения появился в 1973 г. КТ аппараты первого поколения были пошаговыми. Была одна трубка, направленная на один детектор. Сканирование производилось шаг за шагом, делая по одному обороту на слой. Один слой изображения обрабатывался около 4 минут.

2. Во 2-ом поколении КТ аппаратов использовался веерный тип конструкции. На кольце вращения напротив рентгеновской трубки устанавливалось несколько детекторов. Время обработки изображения составило 20 секунд.

3. 3-е поколение компьютерных томографов ввело понятие спиральной компьютерной томографии. Трубка и детекторы за один шаг стола синхронно осуществляли полное вращение по часовой стрелке, что значительно уменьшило время исследования. Увеличилось и количество детекторов. Время обработки и реконструкций заметно уменьшилось.

4. 4-ое поколение имеет 1088 люминесцентных датчика, расположенных по всему кольцу гентри. Вращается лишь рентгеновская трубка. Благодаря этому методу время вращения сократилось до 0,7 секунд. Но существенного отличия в качестве изображений с КТ аппаратами 3-го поколения не имеет.

Спиральная компьютерная томография

Спиральная КТ используется в клинической практике с 1988 года, когда компания Siemens Medical Solutions представила первый спиральный компьютерный томограф. Спиральное сканирование заключается в одновременном выполнении двух действий: непрерывного вращения источника - рентгеновской трубки, генерирующей излучение, вокруг тела пациента, и непрерывного поступательного движения стола с пациентом вдоль продольной оси сканирования z через апертуру гентри. В этом случае траектория движения рентгеновской трубки, относительно оси z - направления движения стола с телом пациента, примет форму спирали. В отличие от последовательной КТ скорость движения стола с телом пациента может принимать произвольные значения, определяемые целями исследования. Чем выше скорость движения стола, тем больше протяженность области сканирования. Важно то, что длина пути стола за один оборот рентгеновской трубки может быть в 1,5-2 раза больше толщины томографического слоя без ухудшения пространственного разрешения изображения. Технология спирального сканирования позволила значительно сократить время, затрачиваемое на КТ-исследование и существенно уменьшить лучевую нагрузку на пациента.

Многослойная компьютерная томография (МСКТ). Многослойная («мультиспиральная») компьютерная томография с внутривенным контрастным усилением и трёхмерной реконструкцией изображения. Многослойная («мультиспиральная», «мультисрезовая» компьютерная томография - мсКТ) была впервые представлена компанией Elscint Co. в1992 году. Принципиальное отличие мсКТ томографов от спиральных томографов предыдущих поколений в том, что по окружности гантри расположены не один, а два и более ряда детекторов. Для того, чтобы рентгеновское излучение могло одновременно приниматься детекторами, расположенными на разных рядах, была разработана новая - объёмная геометрическая форма пучка. В 1992 году появились первые двухсрезовые (двухспиральные) МСКТ томографы с двумя рядами детекторов, а в 1998 году - четырёхсрезовые (четырёхспиральные), с четырьмя рядами детекторов соответственно. Кроме вышеотмеченных особенностей, было увеличено количество оборотов рентгеновской трубки с одного до двух в секунду. Таким образом, четырёхспиральные мсКТ томографы пятого поколения на сегодняшний день в восемь раз быстрее, чем обычные спиральные КТ томографы четвертого поколения. В 2004-2005 годах были представлены 32-, 64- и 128-срезовые мсКТ томографы, в том числе - с двумя рентгеновскими трубками. Сегодня же в некоторых больницах уже имеются 320-срезовые компьютерные томографы. Эти томографы, впервые представленные в 2007 году компанией Toshiba, являются новым витком эволюции рентгеновской компьютерной томографии. Они позволяют не только получать изображения, но и дают возможность наблюдать почти что «в реальном» времени физиологические процессы, происходящие в головном мозге и в сердце. Особенностью подобной системы является возможность сканирования целого органа (сердце, суставы, головной мозг и т.д.)за один оборот лучевой трубки, что значительно сокращает время обследования, а так же возможность сканировать сердце даже у пациентов, страдающих аритмиями. Несколько 320-ти срезовых сканеров уже установлены и функционируют в России.

Подготовка:

Специальной подготовки больного к КТ органов головы, шеи, грудной полости и конечностей не требуется. При исследовании аорты, нижней полой вены, печени, селезенки, почек больному рекомендуется ограничиться легким завтраком. На исследование желчного пузыря пациент должен явиться натощак. Перед КТ поджелудочной железы и печени необходимо принять меры для уменьшения метеоризма. Для более четкого дифференцирования желудка и кишечника при КТ брюшной полости их контрастируют путем дробного приема внутрь пациентом до исследования около 500 мл 2,5 % раствора водорастворимого йодистого контрастного вещества. Следует также учесть, что если накануне проведения КТ больному выполняли рентгенологическое исследование желудка или кишечника, то скопившийся в них барий будет создавать артефакты на изображении. В связи с этим не следует назначать КТ до полного опорожнения пищеварительного канала от этого контрастного вещества.

Разработана дополнительная методика выполнения КТ - усиленная КТ . Она заключается в проведении томографии после внутривенного введения больному водорастворимого контрастного вещества (перфузия). Этот прием способствует увеличению поглощения рентгеновского излучения в связи с появлением контрастного раствора в сосудистой системе и паренхиме органа. При этом, с одной стороны, повышается контрастность изображения, а с другой - выделяются сильно васкуляризованные образования, например сосудистые опухоли, метастазы некоторых опухолей. Естественно, на фоне усиленного теневого изображения паренхимы органа в ней лучше выявляются малососудистые или вовсе бессосудистые зоны (кисты, опухоли).

Некоторые модели компьютерных томографов снабжены кардиосинхронизаторами . Они включают излучатель в точно заданные моменты времени-в систолу и диастолу. Полученные в результате такого исследования поперечные срезы сердца позволяют визуально оценить состояние сердца в систолу и диастолу, провести расчет объема камер сердца и фракции выброса, проанализировать показатели общей и регионарной сократительной функции миокарда.

Компьютерная томография с двумя источниками излучения. DSCT - Dual Source Computed Tomography.

В 2005 году компанией Siemens Medical Solutions представлен первый аппарат с двумя источниками рентгеновского излучения. Теоретические предпосылки к его созданию были еще в 1979 году, но технически его реализация в тот момент была невозможна. По сути он является одним из логичных продолжений технологии МСКТ. Дело в том, что при исследовании сердца (КТ-коронарография) необходимо получение изображений объектов находящихся в постоянном и быстром движении, что требует очень короткого периода сканирования. В МСКТ это достигалось синхронизацией ЭКГ и обычного исследования при быстром вращении трубки. Но минимальный промежуток времени, требуемый для регистрации относительно неподвижного среза для МСКТ при времени обращения трубки, равном 0,33 с (≈3 оборота в секунду), равен 173 мс, то есть время полуоборота трубки. Такое временное разрешение вполне достаточно для нормальной частоты сердечных сокращений (в исследованиях показана эффективность при частотах менее 65 ударов в минуту и около 80, с промежутком малой эффективности между этими показателями и при больших значениях). Некоторое время пытались увеличить скорость вращения трубки в гентри томографа. В настоящее время достигнут предел технических возможностей для ее увеличения, так как при обороте трубки в 0,33 с ее вес возрастает в 28 раз (перегрузки 28 g). Чтобы получить временное разрешение менее 100 мс, требуется преодоление перегрузок более чем 75 g. Использование же двух рентгеновских трубок, расположенных под углом 90°, дает временное разрешение, равное четверти периода обращения трубки (83 мс при обороте за 0,33 с). Это позволило получать изображения сердца независимо от частоты сокращений. Также такой аппарат имеет еще одно значительное преимущество: каждая трубка может работать в своем режиме (при различных значениях напряжения и тока, кВ и мА соответственно). Это позволяет лучше дифференцировать на изображении близкорасположенные объекты различных плотностей. Особенно это важно при контрастировании сосудов и образований, находящихся близко от костей или металлоконструкций. Данный эффект основан на различном поглощении излучения при изменении его параметров у смеси кровь + йодсодержащее контрастное вещество при неизменности этого параметра у гидроксиапатита (основа кости) или металлов. В остальном аппараты являются обычными МСКТ аппаратами и обладают всеми их преимуществами.

Показания:

· Головная боль

· Травма головы, не сопровождающаяся потерей сознания

· Обморок

· Исключение рака легких. В случае использования компьютерной томографии для скрининга, исследование делается в плановом порядке.

· Тяжелые травмы

· Подозрение на кровоизлияние в мозг

· Подозрение на повреждение сосуда (например, расслаивающая аневризма аорты)

· Подозрение на некоторые другие острые повреждения полых и паренхиматозных органов (осложнения как основного заболевания, так и в результате проводимого лечения)

· Большинство КТ исследований делается в плановом порядке, по направлению врача, для окончательного подтверждения диагноза. Как правило, перед проведением компьютерной томографии, делаются более простые исследования - рентген, УЗИ, анализы и т. д.

· Для контроля результатов лечения.

· Для проведения лечебных и диагностических манипуляций, например пункция под контролем компьютерной томографии и др.

Преимущества:

· Наличие компьютера оператора аппарата, который заменяет собой пультовую комнату. Это улучшает контроль за ходом исследования, т.к. оператор располагается непосредственно перед смотровым просвинцованым окном, также оператор может отслеживать параметры жизнедеятельности больного непосредственно во время исследования.

· Отпала необходимость в обустройстве фотолаборатории в связи с внедрением проявочной машины. Больше нет необходимости в ручном проявлении снимков в танках с проявителем и фиксажем. Также не требуется темновой адаптации зрения для работы в фотолаборатории. В проявочную машину заблаговременно загружается запас пленки (как в обычный принтер). Соответственно улучшились характеристики циркулирующего в помещении воздуха, и повысился комфорт работы для персонала. Ускорился процесс проявки снимков и их качество.

· Значительно повысилось качество изображения, которое стало возможным подвергать компьютерной обработке, хранить в памяти. Отпала необходимость в рентгеновской пленке, архивах. Появилась возможность передачи изображения по кабельным сетям, обработка на мониторе. Появились методы объемной визуализации.

· Высокое пространственное разрешение

· Быстрота обследования

· Возможность 3-мерной и многоплоскостной реконструкции изображений

· Низкая оператор-зависимость метода

· Возможность стандартизации исследования

· Относительная доступность оборудования (по количеству аппаратов и стоимости обследования)

· Преимущества МСКТ перед обычной спиральной КТ

o улучшение временного разрешения

o улучшение пространственного разрешения вдоль продольной оси z

o увеличение скорости сканирования

o улучшение контрастного разрешения

o увеличение отношения сигнал/шум

o эффективное использование рентгеновской трубки

o большая зона анатомического покрытия

o уменьшение лучевой нагрузки на пациента

Недостатки:

· Относительный недостаток КТ - высокая стоимость исследования по сравнению с обычными рентгеновскими методами. Это ограничивает широкое применение КТ строгими показаниями.

· Наличие ионизирующего излучения и использование рентгеноконтрастных средств

Некоторые абсолютные и относительные противопоказания :

Без контраста

· Беременность

С контрастом

· Наличие аллергии на контрастный препарат

· Почечная недостаточность

· Тяжёлый сахарный диабет

· Беременность (тератогенное воздействие рентгеновского излучения)

· Тяжёлое общее состояние пациента

· Масса тела более максимальной для прибора

· Заболевания щитовидной железы

· Миеломная болезнь

Ангиографией называют рентгенологическое исследование кровеносных сосудов, производимое с применением контрастных веществ. Для искусственного контрастирования в кровяное и лимфатическое русло вводят раствор органического соединения йода, предназначенного для этой цели. В зависимости от того, какую часть сосудистой системы контрастируют, различают артериографию, венографию (флебографию) и лимфографию. Ангиографию выполняют только после общеклинического обследования и лишь в тех случаях, когда с помощью неинвазивных методов не удается диагностировать болезнь и предполагается, что на основании картины сосудов или изучения кровотока можно выявить поражение собственно сосудов или их изменения при заболеваниях других органов.

Показания:

· для исследования гемодинамики и выявления собственно сосудистой патологии,

· диагностики повреждений и пороков развития органов,

· распознавания воспалительных, дистрофических и опухолевых поражений, вызываю-

· их нарушение функции и морфологии сосудов.

· Ангиография является небходимым этапом при проведении эндоваскулярных операций.

Противопоказания:

· крайне тяжелое состояние больного,

· острые инфекционные, воспалительные и психические заболевания,

· выраженная сердечная, печеночная и почечная недостаточность,

· повышенная чувствительность к препаратам йода.

Подготовка:

· Перед исследованием врач должен разъяснить пациенту необходимость и характер процедуры и получить его согласие на ее проведение.

· Вечером накануне ангиографии назначают транквилизаторы.

· Утром отменяют завтрак.

· В области пункции выбривают волосы.

· За 30 мин до исследования выполняют премедикацию (антигистаминные препараты,

· транквилизаторы, анальгетики).

Излюбленным местом для катетеризации служит область бедренной артерии. Больного укладывают на спину. Операционное поле обрабатывают и отграничивают стерильными простынями. Прощупывают пульсирующую бедренную артерию. После местной паравазальной анестезии 0,5 % раствором новокаина делают разрез кожи длиной 0,3-0,4 см. Из него тупым путем прокладывают узкий ход к артерии. В проделанный ход с небольшим наклоном вводят специальную иглу с широким просветом. Ею прокалывают стенку артерии, после чего колющий стилет удаляют. Подтягивая иглу, локализуют ее конец в просвете артерии. В этот момент из павильона иглы появляется сильная струя крови. Через иглу в артерию вводят металлический проводник, который затем продвигают во внутреннюю и общую подвздошную артерии и аорту до избранного уровня. Иглу удаляют, а по проводнику в необходимую точку артериальной системы вводят рентгеноконтрастный катетер. За его продвижением наблюдают на дисплее. После уда- ления проводника свободный (наружный) конец катетера присоединяют к адаптеру и катетер сразу же промывают изотоническим раствором натрия хлорида с гепарином. Все манипуляции при ангиографии осуществляют под контролем рентгенотелевидения. Участники катетеризации работают в защитных фартуках, поверх которых надеты стерильные халаты. В процессе ангиографии ведут постоянное наблюдение за состоянием больного. Через катетер в исследуемую артерию автоматическим шприцем (инъектором) под давлением вводят контрастное вещество. В тот же момент начинается скоростная рентгеновская съемка. Ее программа - число и время выполнения снимков - установлена на пульте управления аппаратом. Снимки немедленно проявляют. Убедившись в успехе исследования, катетер удаляют. Место пункции прижимают на 8-10 мин для остановки кровотечения. На область пункции на сутки накладывают давящую повязку. Больному на тот же срок предписывается постельный режим. Спустя сутки повязку заменяют асептической наклейкой. За состоянием больного постоянно следит лечащий врач. Обязательны измерение температуры тела и осмотр места оперативного вмешательства.

Новой методикой рентгенологического исследования сосудов является дигитальная субтракционная ангиография (ДСА) . В основе ее лежит принцип компьютерного вычитания (субтракции) двух изображений, записанных в памяти компьютера,- снимков до и после введения контрастного вещества в сосуд. Благодаря компьютерной обработке итоговая рентгенологическая картина сердца и сосудов отличается высоким качеством, но главное - на ней можно выделить изображение сосудов из общего изображения исследуемой части тела, в частности убрать мешающие тени мягких тканей и скелета и количественно оценить гемодинамику. Существенным преимуществом ДСА по сравнению с другими методиками является уменьшение необходимого количества рентгеноконтрастного вещества, поэтому можно получить изображение сосудов при большом разведении контрастного вещества. А это означает (внимание!), что можно ввести контрастное вещество внутривенно и на последующей серии снимков получить тень артерий, не прибегая к их катетеризации. В настоящее время почти повсеместно обычную ангиографию заменяют на ДСА.

Радионуклидный метод - это способ исследования функционального и морфологического состояния органов и систем с помощью радионуклидов и меченных ими индикаторов. Эти индикаторы - их называют радиофармацевтическими препаратами (РФП) - вводят в организм больного, а затем с помощью различных приборов определяют скорость и характер перемещения, фиксации и выведения их из органов и тканей.

Радиофармацевтическим препаратом называют разрешенное для введения человеку с диагностической целью химическое соединение, в молекуле которого содержится радионуклид. радионуклид должен обладать спектром излучения определенной энергии, обусловливать минимальную лучевую нагрузку и отражать состояние исследуемого органа.

Для получения изображения органов применяют только радионуклиды, испускающие γ-лучи или характеристическое рентгеновское излучение, так как эти излучения можно регистрировать при наружной детекции. Чем больше γ-квантов или рентгеновских квантов образуется при радиоактивном распаде, тем эффективнее данный РФП в диагностическом отношении. В то же время радионуклид должен испускать по возможности меньше корпускулярного излучения - электронов, которые поглощаются в теле пациента и не участвуют в получении изображения органов. С этих позиций предпочтительны радионуклиды с ядерным превращением по типу изомерного перехода - Тс, In. Оптимальным диапазоном энергии квантов в радионуклидной диагностике считают 70-200 кэВ. Время, в течение которого активность введенного в организм РФП уменьшается наполовину вследствие физического распада и выведения, называют эффективным периодом полувыведения (Тм.)

Для выполнения радионуклидных исследований разработаны разнообразные диагностические приборы. Независимо от их конкретного назначения все эти приборы устроены по единому принципу: в них есть детектор, преобразующий ионизирующее излучение в электрические импульсы, блок электронной обработки и блок представления данных. Многие радиодиагностические приборы оснащены компьютерами и микропроцессорами. В качестве детектора обычно используют сцинтилляторы или, реже, газовые счетчики. Сцинтиллятор - это вещество, в котором под действием быстро заряженных частиц или фотонов возникают световые вспышки - сцинтилляции. Эти сцинтилляции улавливаются фотоэлектронными умножителями (ФЭУ), которые превращают световые вспышки в электрические сигналы. Сцинтилляционный кристалл и ФЭУ помещают в защитный металлический кожух - коллиматор, ограничивающий «поле видения» кристалла размерами органа или изучаемой части тела пациента. В коллиматоре имеется одно большое или несколько мелких отверстий, через которые радиоактивное излучение проникает в детектор.

В приборах, предназначенных для определения радиоактивности биологических проб (in vitro), применяют сцинтилляционные детекторы в виде так называемых колодезных счетчиков. Внутри кристалла имеется цилиндрический канал, в который помещают пробирку с исследуемым материалом. Такое устройство детектора значительно повышает его способность улавливать слабые излучения биологических проб. Для измерения радиоактивности биологических жидкостей, содержащих радионуклиды с мягким β-излучением, применяют жидкие сцинтилляторы.

Специальной подготовки больного не требуется.

Показания к радионуклидному исследованию определяет лечащий врач после консультации с радиологом. Как правило, его проводят после других клинических, лабораторных и неинвазивных лучевых процедур, когда становится ясна необходимость радионуклидных данных о функции и морфологии того иди иного органа.

Противопоказаний к радионуклидной диагностике нет, имеются лишь ограничения, предусмотренные инструкциями Министерства здравоохранения Российской Федерации.

Термин «визуализация» образован от английского слова vision (зрение). Им обозначают получение изображения, в данном случае с помощью радиоактивных нуклидов. Радионуклидная визуализация - это создание картины пространственного распределения РФП в органах и тканях при введении его в организм пациента. Основным методом радионуклидной визуализации является гаммасцинтиграфия (или просто сцинтиграфия), которую проводят на аппарате, называемом гамма-камерой. Вариантом сцинтиграфии, выполняемой на специальной гамма-камере (с подвижным детектором), является послойная радионуклидная визуализация - однофотонная эмиссионная томография. Редко, главным образом из-за технической сложности получения ультракороткоживущих позитронизлучающих радионуклидов, проводят двухфотонную эмиссионную томографию также на специальной гамма-камере. Иногда применяют уже устаревший метод радионуклидной визуализации - сканирование; его выполняют на аппарате, называемом сканером.

Сцинтиграфия - это получение изображения органов и тканей пациента посредством регистрации на гамма-камере излучения, испускаемого инкорпорированным радионуклидом. Гамма-камера: В качестве детектора радиоактивных излучений применяют сцинтилляционный кристалл (обычно йодид натрия) больших размеров – диаметром до 50 см. Это обеспечивает регистрацию излучения одномоментно над всей исследуемой частью тела. Исходящие из органа гамма-кванты вызывают в кристалле световые вспышки. Эти вспышки регистрируются несколькими ФЭУ, которые равномерно расположены над поверхностью кристалла. Электрические импульсы из ФЭУ через усилитель и дискриминатор передаются в блок анализатора, который формирует сигнал на экране дисплея. При этом координаты светящейся на экране точки точно соответствуют координатам световой вспышки в сцинтилляторе и, следовательно, расположению радионуклида в органе. Одновременно с помощью электроники анализируется момент возникновения каждой сцинтилляции, что дает возможность определить время прохождения радионуклида по органу. Важнейшей составной частью гамма-камеры, безусловно является специализированный компьютер, который позволяет производить разнообразную компьютерную обработку изображения: выделять на нем заслуживающие внимания поля - так называемые зоны интереса - и проводить в них различные процедуры: измерение радиоактивности (общей и локальной), определение размеров органа или его частей, изучение скорости прохождения РФП в этом поле. С помощью компьютера можно улучшить качество изображения, выделить на нем интересующие детали, например питающие орган сосуды.

Сцинтиграмма - это функционально-анатомическое изображение. В этом уникальность радионуклидных изображений, отличающая их от получаемых при рентгенологическом и ультразвуковом исследованиях, магнитно-резонансной томографии. Отсюда вытекает и основ-ное условие для назначения сцинтиграфии - исследуемый орган обязательно должен быть хотя бы в ограниченной степени функционально активным. В противном случае сцинтиграфическое изображение не получится.

При анализе сцинтиграмм, в основном статических, наряду с топографией органа, его размерами и формой определяют степень однородности его изображения. Участки с повышенным накоплением РФП называют горячими очагами, или горячими узлами. Обычно им соответствуют избыточно активно функционирующие участки органа - воспалительно измененные ткани, некоторые виды опухолей, зоны гиперплазии. Если же на сиинтиграмме выявляется область пониженного накопления РФП, то, значит, речь идет о каком-то объемном образовании, заместившем нормально функционирующую паренхиму органа,- так называемые холодные узлы. Они наблюдаются при кистах, метастазах, очаговом склерозе, некоторых опухолях.

Однофотонная эмиссионная томография (ОФЭТ) постепенно вытесняет обычную статическую сцинтиграфию, так как позволяет с таким же количеством того же РФП добиться лучшего пространственного разрешения, т.е. выявлять значительно более мелкие участки поражения органа - горячие и холодные узлы. Для выполнения ОФЭТ применяют специальные гамма-камеры. От обычных они отличаются тем, что детекторы (чаще два) камеры вращаются вокруг тела больного. В процессе вращения сцинтилляционные сигналы поступают на компьютер из разных ракурсов съемки, что дает возможность построить на экране дисплея послойное изображение органа.

ОФЭТ отличается от сцинтиграфии более высоким качеством изображения. Она позволяет выявить более мелкие детали и, следовательно, распознать заболевание на более ранних стадиях и с большей достоверностью. При наличии достаточного числа поперечных «срезов», полученных за короткий период времени, с помощью компьютера можно построить на экране дисплея трех-мерное объемное изображение органа, позволяющее получить более точноепредставление о его структуре и функции.

Существует еще один вид послойной радионуклидной визуализации - позитронная двухфотонная эмиссионная томография (ПЭТ) . В качестве РФП используют радионуклиды, испускающие позитроны, в основном ультракороткоживущие нуклиды, период полураспада которых составляет несколько минут,- С (20,4 мин), N (10 мин),О (2,03 мин),F(1О мин). Испускаемые этими радионуклидами позитроны аннигилируют вблизи атомов с электронами, следствием чего является возникновение двух гамма-квантов - фотонов (отсюда и название метода), разлетающихся из точки аннигиляции в строго противоположных направлениях. Разлетающиеся кванты регистрируются несколькими детекторами гамма-камеры, располагающимися вокруг обследуемого. Основным достоинством ПЭТ является то, что используемыми при ней радионуклидами можно метить очень важные в физиологическом отношении лекарственные препараты, например глюкозу, которая, как известно, активно участвует во многих метаболических процессах. При введении в организм пациента меченой глюкозы она активно включается в тканевый обмен головного мозга и сердечной мышцы.

Распространение этого важного и весьма перспективного метода в клинике сдерживается тем обстоятельством, что ультракороткоживушие радионуклиды производят на ускорителях ядерных частиц - циклотронах.

Преимущества:

· Получение данных о функции органа

· Получение данных о наличии опухоли и метастазов с высокой достоверностью на ранних стадиях

Недостатки:

· Все медицинские исследования, связанные с использованием радионуклидов, проводят в специальных лабораториях радиоиммунной диагностики.

· Лаборатории оснащаются средствами и оборудованием, обеспечивающими защиту персонала от излучения и предотвращение загрязнения радиоактивными веществами.

· Проведение радиодиагностических процедур регламентируется нормами радиационной безопасности для пациентов при использовании радиоактивных веществ с диагностической целью.

· В соответствии с этими нормами выделены 3 группы обследуемых лиц - АД, БД и ВД. К категории АД относятся лица, которым радионуклидная диагностическая процедура назначается в связи с онкологическим заболеванием или подозрением на него, к категории БД - лица, которым диагностическая процедура проводится в связи с заболеваниями неонкологического характера, к категории ВД - лица. подлежащие обследованию, например с профилактической целью, по специальным таблицам лучевых нагрузок врач-радиолог определяет допустимость с точки зрения радиационной безопасности выполнения того и иного радионуклидного диагностического исследования.

Ультразвуковой метод - способ дистантного определения положения, формы, величины, структуры и движения органов и тканей, а также патологических очагов с помощью ультразвукового излучения.

Противопоказаний к применению нет.

Достоинства:

· относятся к числу неионизирующих излучений и в применяемом в диагностике диапазоне не вызывают выраженных биологических эффектов.

· Процедура ультразвуковой диагностики непродолжительна, безболезненна, может быть многократно повторена.

· Ультразвуковой аппарат занимает мало места и может быть использован для обследования как стационарных, так и амбулаторных больных.

· Низкая стоимость исследования и аппаратуры.

· Нет необходимости в защите доктора и пациента и специальном обустройстве кабинета.

· безопасность в плане дозовой нагрузки (обследование беременных и кормящих женщин);

· высокая разрешающая способность,

· дифференциальная диагностика солидного и полостного образования

· визуализация регионарных лимфатических узлов;

· проведение прицельных пункционных биопсий пальпируемых и непальпируемых образований под объективным визуальным контролем, многократное динамическое исследование в процессе лечения.

Недостатки:

· отсутствие визуализации органа в целом (только томографический срез);

· малая информативность при жировой инволюции (ультразвуковая контрастность между опухолевой и жировой тканями слабая);

· субъективность интерпретации полученного изображения (операторозависимый метод);

Аппарат для ультразвукового исследования представляет собой сложное и достаточно портативное устройство, выполняемое в стационарном или переносном варианте. Датчик аппарата, называемый также трансдюсером, включает в себя ультразвуковой преобразователь. основной частью которого является пьезокерамический кристалл. Короткие электрические импульсы, поступающие из электронного блока прибора, возбуждают в нем ультразвуковые колебния - обратный пьезоэлектрический эффект. Применяемые для диагностики колебания характеризуются небольшой длиной волны, что позволяет формировать из них узкий пучок, направленный на исследуемую часть тела. Отраженные волны («эхо») воспринимаются тем же пьезоэлементом и преобразуются в электрические сигналы - прямой пьезоэлектрический эффект. Последние поступают в высокочастотны усилитель, обрабатываются в электронном блоке прибора и выдаются пользователю в виде одномерного (в форме кривой) или двухмерного (в форме картинки) изображения. Первое называют эхограммой, а второе - сонограммой (синонимы: улыпрасонограмма, ультразвуковая сканограмма). В зависимости от формы получаемого изображения различают секторные, линейные и конвексные (выпуклые) датчики.

По принципу действия все ультразвуковые датчики делят на две группы: эхоимпульсные и допплеровские. Приборы первой группы служат для определения анатомических структур, их визуализации и измерения Допплеровские датчики позволяют получать кинематическую характеристику быстро протекающих процессов - кровотока в сосудах, сокращений сердца. Однако такое деление условно. Многие установки дают возможность одновременно изучать как анатомические, так и функциональные параметры.

Подготовка:

· Для исследования головного мозга, глаза, щитовидной, слюнных и молочной желез, сердца, почек, обследования беременных со сроком более 20 нед специальной подготовки не требуется.

· При изучении органов брюшной полости, особенно поджелудочной железы, следует тщательно подготовить кишечник, чтобы в нем не было скопления газа.

· Больной должен явиться в ультразвуковой кабинет натощак.

Наибольшее распространение в мимической практике нашли три метода ультразвуковой диагностики: одномерное исследование (эхография), двухмерное исследование (сонография, сканирование) и допплерография. Все они основаны на регистрации отраженных от объекта эхосигналов.

Различают два варианта одномерного ультразвукового исследования: А- и М-методы.

Принцип Α-метода : Датчик находится в фиксированном положении для регистрации эхосигнала в направлении излучения. Эхосигналы представляются в одномерном виде как амплитудные отметки на оси времени. Отсюда, кстати, и название метода (от англ. amplitude - амплитуда). Иными словами, отраженный сигнал образует на экране индикатора фигуру в виде пика на прямой линии. Количество и расположение пиков на горизонтальной прямой соответствуют расположению отражающих ультразвук элементов объекта. Следовательно, одномерный Α-метод позволяет определить расстояние между слоями тканей на пути ультразвукового импульса. Основное клиническое применение А-метода - офтальмология и неврология. Α-метод ультразвуковой биолокации по-прежнему достаточно широко применяют в клинике, так как его отличают простота, дешевизна и мобильность исследования.

М-метод (от английского motion - движение) также относится к одномерным ультразвуковым исследованиям. Он предназначен для исследования движущегося объекта - сердца. Датчик также находится в фиксированном положении.Частота посылки ультразвуковых импульсов очень высокая - около 1000 в 1 с, а продолжительность импульса очень небольшая, всего I мкс. Отраженные от движущихся стенок сердца эхосигналы записываются на диаграммную бумагу. По форме и расположению зарегистрированных кривых можно составить представление о характере сокращений сердца. Данный метод ультразвуковой биолокации получил также название «эхокардиография» и, как следует из его описания, применяется в кардиологической практике.

Ультразвуковое сканирование позволяет получать двухмерное изображении органов (сонография). Этот метод известен также под названием В-метод (от англ. bright - яркость). Сущность метода заключается в перемещении ультразвукового пучка по поверхности тела во время исследования. Этим обеспечивается регистрация сигналов одновременно или последовательно от многих объектов. Получаемая серия сигналов служит для формирования изображения. Оно возникает на дисплее и может быть зафиксировано на бумаге. Это изображение можно подвергнуть математической обработке, определяя размеры (площадь периметр, поверхность и объем) исследуемого органа. При ультразвуковом сканировании яркость каждой светящейся точки на экране индикатора находится в прямой зависимости от интенсивности эхосигнала. Сигналы разной силы обусловливают на экране участки потемнения различной степени (от белого до черного цвета). На аппаратах с такими индикаторами плотные камни выглядят ярко-белыми, а образования, содержащие жидкость,- черными.

Допплерография -основана на эффекте Допплера, эффект состоит в изменении длины волны (или частоты) при движении источника волн относительно принимающего их устройства.

Существуют два вида допплерографических исследований - непрерывный (постоянноволновой) и импульсный. При первом генерация ультразвуковых волн осуществляется непрерывно одним пьезокристаллическим элементом а регистрация отраженных волн - другим. В электронном блоке прибора производится сравнение двух частот ультразвуковых колебаний: направленных на больного и отраженных от него. По сдвигу частот этих колебаний судят о скорости движения анатомических структур. Анализ сдвига частот может производиться акустически или с помощью самописцев.

Непрерывная допплерография - простой и доступный метод исследования. Он наиболее эффективен при высоких скоростях движения крови, например в местах сужения сосудов. Однако у этого метода имеется существенный недостаток: частота отраженного сигнала изменяется не только вследствие движения крови в исследуемом сосуде, но и из-за любых других движущихся структур, которые встречаются на пути падающей ультразвуковой волны. Таким образом, при непрерывной допплерографии определяется суммарная скорость движения этих объектов.

От указанного недостатка свободна импульсная допплерография . Она позволяет измерить скорость в заданном врачом участке контрольного объема (до 10 точек)

Большое значение в клинической медицине, особенно в ангиологии, получила ультразвуковая ангиография, или цветное допплеровское картирование . Метод основан на кодировании в цвете среднего значения допплеровского сдвига излучаемой частоты. При этом кровь, движущаяся к датчику, окрашивается в красный цвет, а от датчика - в синий. Интенсивность цвета возрастает с увеличением скорости кровотока.

Дальнейшим развитием допплеровского картирования стал энергетический допплер . При этом методе в цвете кодируется не средняя величина допплеровского сдвига, как при обычном допплеровском картировании, а интеграл амплитуд всех эхосигналов допплеровского спектра. Это дает возможность получать изображение кровеносного сосуда на значительно большем протяжении, визуализировать сосуды даже очень небольшого диаметра (ультразвуковая ангиография). На ангиограммах, полученных с помощью энергетического допплера, отражается не скорость движения эритроцитов, как при обычном цветовом картировании, а плотность эритроцитов в заданном объеме.

Еще один вид допплеровского картирования - тканевый допплер . Он основан на визуализации нативных тканевых гармоник. Они возникают какдополнительные частоты при распространении волнового сигнала в материальной среде, являются составной частью этого сигнала и кратны его основной (фундаментальной) частоте. Регистрируя только тканевые гармоники (без основного сигнала), удается получить изолированное изображение сердечной мышцы без изображения содержащейся в полостях сердца крови.

МРТ основана на явлении ядерно-магнитного резонанса. Если тело,находящееся в постоянном магнитном поле, облучить внешним переменным магнитным полем, частота которого точно равна частоте перехода между энергетическими уровнями ядер атомов, то ядра начнут переходить в вышележащие по энергии квантовые состояния. Иными словами, наблюдается избирательное (резонансное) поглощение энергии электромагнитного поля. При прекращении воздействия переменного электромагнитного поля возникает резонансное выделение энергии.

Современные МР-томографы «настроены» на ядра водорода, т.е. на протоны. Протон постоянно вращается. Следовательно, вокруг него тоже образуется магнитное поле, которое имеет магнитный момент, или спин. При помещении вращающегося протона в магнитное поле возникает прецессирование протона. Прецессией называется движение оси вращения протона, при котором она описывает круговую коническую поверхность наподобие оси вращающегося волчка.Обычно дополнительное радиочастотное поле действует в виде импульса, причем в двух вариантах: более короткого, который поворачивает протон на 90°, и более продолжительного, поворачивающего протон на 180°. Когда радиочастотный импульс заканчивается, протон возвращается в исходное положение (наступает его релаксация), что сопровождается излучением порции энергии. Каждый элемент объема исследуемого объекта (т.е. каждый воксел - от англ. volume - объем, cell - клетка) за счет релаксации распределенных в нем протонов возбуждает электрический ток («МР-сигналы») в приемной катушке, находящейся вне объекта. Магнитно-резонансными характеристиками объекта служат 3 параметра: плотность протонов, время Τι и время Т2. Τ1 называют спин-решетчатой, или продольной, релаксацией, а Т2 - спин-спиновой, или поперечной. Амплитуда зарегистрированного сигнала характеризует плотность протонов или, что то же самое, концентрацию элемента в исследуемой среде.

Система для МРТ состоит из сильного магнита, создающего статическое магнитное поле. Магнит полый, в нем имеется туннель, в котором располагается пациент. Стол для пациента имеет автоматическую систему управления движением в продольном и вертикальном направлениях Для радиоволнового возбуждения ядер водорода дополнительно устанавливают высокочастотную катушку, которая одновременно служит для приема сигнала релаксации. С помощью специальных градиентных катушек накладывается дополнительное магнитное поле которое служит для кодирования МР-сигнала от пациента, в частности оно задает уровень и толщину выделяемого слоя.

При МРТ можно применять искусственное контрастирование тканей. С этой целью используют химические вещества, обладающие магнитными свойствами и содержащие ядра с нечетным числом протонов и нейтронов, например соединения фтора, или же парамагнетики, которые изменяют время релаксации воды и тем самым усиливают контрастность изображения на МР-томограммах. Одним из наиболее распространенных контрастных веществ, используемых в МРТ, является соединение гадолиния Gd-DTPA.

Недостатки:

· к размещению МР-томографа в лечебном учреждении предъявляются очень строгие требования. Необходимы отдельные помещения, тщательно экранированные от внешних магнитных и радиочастотных полей.

· процедурная комната, где находится МР-томограф, заключена в металлическую сетчатую клетку (клетка Фарадея), поверх которой нанесен отделочный материал (пола, потолка, стен).

· Трудности в визуализации полых органов и органов грудной клетки

· Большое количество времени затрачивается на исследование (по сравнению с МСКТ)

· У детей в возрасте от периода новорожденности до 5–6 лет обследование обычно может быть проведено только на фоне седации под контролем анестезиолога.

· Дополнительным ограничением может оказаться окружность талии, несовместимая с диаметром туннеля томографа(для каждого вида МР-томографа свой лимит веса пациента).

· Основными диагностическими ограничениями МРТ является невозможность достоверного выявления кальцинатов, оценки минеральной структуры костной ткани (плоские кости, кортикальная пластинка).

· Также МРТ значительно в большей степени, чем КТ, подвержена возникновению артефактов от движений.

Достоинства:

· позволяет получать изображение тонких слоев тела человека в любом сечении -фронтальном, сагиттальном, аксиальном (как известно, при рентгеновской компьютерной томографии, за исключением спиральной КТ, может быть использовано только аксиальное сечение).

· Исследование необременительно для больного, абсолютно безвредно, не вызывает осложнений.

· На МР-томограммах лучше, чем на рентгеновских компьютерных томограммах, отображаются мягкие ткани: мышцы, хрящи, жировые прослойки.

· МРТ позволяет выявлять инфильтрацию и деструкцию костной ткани, замещение костного мозга задолго до появления рентгенологических (в том числе КТ) признаков.

· При МРТ можно получать изображение сосудов, не вводя в них контрастное вещество.

· С помощью специальных алгоритмов и подбора радиочастотных импульсов современные высокопольные МР-томографы позволяют получать двухмерное и трехмерное (объемное) изображения сосудистого русла - магнитно-резонансная ангиография.

· Крупные сосуды и их разветвления среднего калибра удается достаточно четко визуализировать на МР-томограммах без дополнительного введения контрастного вещества.

· Для получения изображения мелких сосудов дополнительно вводят препараты гадолиния.

· Разработаны ультравысокоскоростные МР-томографы, позволяющие наблюдать движение сердца и крови в его полостях и сосудах и получать матрицы повышенной разрешающей способности для визуализации очень тонких слоев.

· С целью предотвращения развития у пациентов клаустрофобии освоен выпуск открытых МР-томографов. В них нет длинного магнитного туннеля, а постоянное магнитное поле создается путем размещения магнитов сбоку от больного. Подобное конструктивное решение не только позволило избавить пациента от необходимости длительное время находиться в относительно замкнутом пространстве, но и создало предпосылки для проведения инструментальных вмешательств под контролем МРТ.

Противопоказания:

· Клаустрофобия и томограф закрытого типа

· Наличие металлических (ферромагнитных) имплантов и инородных тел в полостях и тканях. В особенности внутричерепных ферромагнитных гемостатических клипс (при смещении может произойти повреждение сосуда и кровотечение), периорбитальных ферромагнитных инородных тел (при смещении может произойти повреждение глазного яблока)

· Наличие кардиостимуляторов

· Беременным в 1 триместре.

МР-спектроскопия , как и МРТ, основана на явлении ядерно-магнитного резонанса. Обычно исследуют резонанс ядер водорода, реже - углерода, фосфора и других элементов.

Сущность метода состоит в следующем. Исследуемый образец ткани или жидкости помешают в стабильное магнитное поле напряженностью около 10 Т. На образец воздействуют импульсными радиочастотными колебаниями. Изменяя напряженность магнитного поля, создают резонансные условия для разных элементов в спектре магнитного резонанса. Возникающие в образце МР- сигналы улавливаются катушкой приемника излучений, усиливаются и передаются в компьютер для анализа. Итоговая спектрограмма имеет вид кривой, для получения которой по оси абсцисс откладывают доли (обычно миллионные) напряжения приложенного магнитного поля, а по оси ординат - значения амплитуды сигналов. Интенсивность и форма ответного сигнала зависят от плотности протонов и времени релаксации. Последняя определяется местоположением и взаимоотношением ядер водорода и других элементов в макромолекулах Разным ядрам свойственны различные частоты резонанса поэтому МР-спектроскопия позволяет получить представление о химической и пространственной структуре вещества. С ее помощью можно определить структуру биополимеров, липидный состав мембран и их фазовое состояние, проницаемость мембран. По виду МР-спектра удается дифференцировать зрелые

МЕТОДЫ ЛУЧЕВОЙ ДИАГНОСТИКИ

Рентгенология

МЕТОДЫ ЛУЧЕВОЙ ДИАГНОСТИКИ
Открытие рентгеновских лучей положило начало новой эре в медицинской диагностике – эре рентгенологии. В последующем арсенал диагностических средств пополнился методами, в основе которых - другие виды ионизирующих и неионизирующих излучений (радиоизотопные, ультразвуковые методы, магнитно-резонансная томография). Год за годом лучевые методы исследования совершенствовались. В настоящее время они играют ведущую роль в выявлении и установлении характера большинства заболеваний.
На данном этапе изучения перед Вами поставлена цель (общая): уметь интерпретировать принципы получения медицинского диагностического изображения различными лучевыми методами и предназначение этих методов.
Достижение общей цели обеспечивается конкретными целями:
уметь:
1) трактовать принципы получения информации с помощью рентгенологических, радиоизотопных, ультразвуковых методов исследования и магнитно-резонансной томографии;
2) трактовать предназначение этих методов исследования;
3) трактовать общие принципы выбора оптимального лучевого метода исследования.
Освоить вышеперечисленные цели невозможно без базисных знаний-умений, преподаваемых на кафедре медицинской и биологической физики:
1) трактовать принципы получения и физические характеристики рентгеновских лучей;
2) трактовать радиоактивность, возникающие при этом излучения и их физические характеристики;
3) трактовать принципы получения ультразвуковых волн и их физические характеристики;
5) трактовать явление магнитного резонанса;
6) интерпретировать механизм биологического действия различных видов излучений.

1. Рентгенологические методы исследования
Рентгенологическое исследование до настоящего времени играет важную роль в диагностике заболеваний человека. Оно основано на разной степени поглощения рентгеновских лучей различными тканями и органами тела человека. В большей степени лучи поглощаются в костях, в меньшей – в паренхиматозных органах, мышцах и жидких средах организма, ещё менее – в жировой клетчатке и почти не задерживаются в газах. В тех случаях, когда рядом расположенные органы одинаково поглощают рентгеновское излучение, они не различимы при рентгенологическом исследовании. В таких ситуациях прибегают к искусственному контрастированию. Следовательно, рентгенологическое исследование может проводиться в условиях естественной контрастности или искусственного контрастирования. Существует много различных методик рентгенологического исследования.
Целью (общей) изучения данного раздела является умение интерпретировать принципы получения рентгенологического изображения и предназначение различных рентгенологических методов исследования.
1) интерпретировать принципы получения изображения при рентгеноскопии, рентгенографии, томографии, флюорографии, контрастных методиках исследования, компьютерной томографии;
2) трактовать предназначение рентгеноскопии, рентгенографии, томографии, флюорографии, контрастных методик исследования, компьютерной томографии.
1.1. Рентгеноскопия
Рентгеноскопия, т.е. получение теневого изображения на просвечивающем (флюоресцентном) экране, является наиболее доступной и технически простой методикой исследования. Она позволяет судить о форме, положении и размерах органа и в некоторых случаях - его функции. Исследуя больного в различных проекциях и положениях тела, врач-рентгенолог получает объёмное представление об органах человека и определяемой патологии. Чем сильнее поглощает исследуемый орган или патологическое образование излучение, тем меньше лучей попадает на экран. Поэтому такой орган или образование отбрасывают тень на флюоресцирующий экран. И наоборот, если орган или патология менее плотные, то сквозь них проходит больше лучей, и они попадают на экран, вызывая как бы его просветление (свечение).
Флюоресцентный экран светится слабо. Поэтому это исследование проводят в затемненном помещении, а врач должен в течение 15 минут адаптироваться к темноте. Современные рентгенаппараты оснащены электронно-оптическими преобразователями, усиливающими и передающими рентгеновское изображение на монитор (телеэкран).
Однако рентгеноскопия имеет существенные недостатки. Во-первых, она обусловливает значительную лучевую нагрузку. Во-вторых, её разрешающая способность намного ниже, чем рентгенографии.
Эти недостатки менее выражены при использовании рентгентелевизионного просвечивания. На мониторе можно менять яркость, контрастность, тем самым создавая лучшие условия для просмотра. Разрешающая способность такой рентгеноскопии намного выше, а лучевая нагрузка - меньше.
Однако любое просвечивание отличается субъективностью. Все врачи должны полагаться на профессионализм врача-рентгенолога. В некоторых случаях для объективизации исследования рентгенолог выполняет во время скопии рентгенограммы. С этой же целью проводят и видеозапись исследования при рентгентелевизионном просвечивании.
1.2. Рентгенография
Рентгенография – метод рентгенологического исследования, при котором изображение получается на рентгеновской плёнке. Рентгенограмма по отношению к изображению, видимому на рентгеноскопическом экране, является негативом. Поэтому светлым участкам на экране соответствуют тёмные на плёнке (так называемые просветления), и наоборот, тёмным участкам – светлые (тени). На рентгенограммах всегда получается плоскостное изображение с суммацией всех точек, расположенных по ходу лучей. Для получения объёмного представления необходимо производить по крайней мере 2 снимка во взаимно перпендикулярных плоскостях. Главным преимуществом рентгенографии является возможность документировать определяемые изменения. Кроме того, она обладает значительно большей разрешающей способностью, чем рентгеноскопия.
В последние годы нашла применение цифровая (дигитальная) рентгенография, при которой приемником рентгеновских лучей являются специальные пластины. После экспозиции рентгеновскими лучами на них остается скрытое изображение объекта. При сканировании пластин лазерным лучом высвобождается энергия в виде свечения, интенсивность которого пропорциональна дозе поглощенного рентгеновского излучения. Это свечение регистрируется фотодетектором и переводится в цифровой формат. Полученное изображение может быть выведено на монитор, распечатано на принтере и сохранено в памяти компьютера.
1.3. Томография
Томография – рентгенологический метод послойного исследования органов и тканей. На томограммах в отличие от рентгенограмм получают изображение структур, расположенных в какой-либо одной плоскости, т.е. устраняется эффект суммации. Это достигается за счет одновременного движения рентгентрубки и пленки. Появление компьютерной томографии резко снизило применение томографии.
1.4. Флюорография
Флюорография обычно используется для проведения массовых скрининговых рентгенологических исследований, особенно для выявления патологии лёгких. Суть метода заключается в фотографировании изображения с рентгеновского экрана или экрана электронно-оптического усилителя на фотоплёнку. Размер кадра обычно 70х70 или 100х100 мм. На флюорограммах детали изображения видны лучше, чем при рентггеноскопии, но хуже, чем при рентгенографии. Доза облучения, получаемая исследуемым, также больше, чем при рентгенографии.
1.5. Методики рентгенологического исследования в условиях искусственного контрастирования
Как уже указывалось выше, ряд органов, особенно полых, поглощают рентгеновские лучи практически одинаково с окружающими их мягкими тканями. Поэтому при рентгенологическом исследовании они не определяются. Для визуализации их искусственно контрастируют, вводя контрастное вещество. Чаше всего с этой целью используются различные жидкостные йодистые соединения.
В ряде случаев важно получить изображение бронхов, особенно при бронхоэктатической болезни, врождённых пороках бронхов, наличии внутреннего бронхиального или бронхо-плеврального свища. В подобных случаях установить диагноз помогает исследование в условиях контрастирования бронхов – бронхография.
Кровеносные сосуды на обычных рентгенограммах не видны, за исключением сосудов лёгких. Для оценки их состояния проводят ангиографию – рентгенологическое исследование сосудов с применением контрастного вещества. При артериографии контрастное вещество вводят в артерии, при флебографии – в вены.
При введении контрастного вещества в артерию на снимке в норме последовательно отражаются фазы кровотока: артериальная, капиллярная и венозная.
Особое значение контрастное исследование имеет при изучении мочевывыделительной системы.
Различают выделительную (экскреторную) урографию и ретро-градную (восходящую) пиелографию. В основе выделительной урографии лежит физиологическая способность почек захватывать из крови йодированные органические соединения, концентрировать их и выделять с мочой. Перед исследованием пациент нуждается в соответствующей подготовке - очишении кишечника. Исследование проводится натощак. Обычно в локтевую вену вводят 20-40 мл одного из уротропных веществ. Затем через 3-5, 10-14 и 20-25 минут делают снимки. Если секреторная функция почек понижена производится инфузионная урография. При этом пациенту медленно капельно вводят большое количество контрастного вещества (60 –100 мл), разведенного 5% раствором глюкозы.
Экскреторная урография даёт возможность оценить не только лоханки, чашечки, мочеточники, общую форму и размеры почек, но и их функциональное состояние.
В большинстве случаев выделительная урография обеспечивает получение достаточной информации о чащечно-лоханочной системе. Но всё же в единичных случаях, когда это по какой-либо причине не удаётся (например, при значительном снижении или отсутствии функции почки), выполняется восходящая (ретроградная) пиелография. Для этого катетер вводят в мочеточник до нужного уровня, вплоть до лоханки, через него вводят контрастное вещество (7-10 мл) и делают снимки.
Для исследования желчевыводящих путей в настоящее время используют чрескожную чреспеченочную холеграфию и внутривенную холецистохолангиографию. В первом случае контрастное вещество вводится через катетер непосредственно в общий желчный проток. Во втором случае контраст, введенный внутривенно, в гепатоцитах смешивается с желчью и с ней выводится, заполняя желчные протоки и желчный пузырь.
Для оценки проходимости маточных труб применяют гистеросальпингографию (метросльпингографию), при которой контрастное вещество вводится через влагалище в полость матки с помощью специального шприца.
Контрастная рентгенметодика изучения протоков различных желёз (молочной, слюнной и др.) называется дуктографией, различных свищевых ходов – фистулографией.
Пищеварительный тракт изучают в условиях искусственного контрастирования с помощью взвеси сульфата бария, который при исследовании пищевода, желудка и тонкой кишки пациент принимает внутрь, а при исследовании толстой кишки вводят ретроградно. Оценка состояния пищеварительного тракта обязательно проводится путем рентгеноскопии с выполнением серии рентгенограмм. Исследование толстой кишки имеет особое название – ирригоскопия с ирригографией.
1.6. Компьютерная томография
Компьютерная томография (КТ) – метод послойного рентгенологического исследования, в основе которого - компьютерная обработка множественных рентгенологических изображений слоев тела человека в поперечном сечении. Вокруг человеческого тела по окружности расположены множественные ионизационные или сцинтилляционные датчики, улавливающие рентгеновское излучение, прошедшее через исследуемого.
С помощью компьютера врач может увеличивать изображение, выделять и увеличивать различные его части, определять размеры и что очень важно – оценивать плотность каждого участка в условных единицах. Информация о плотности ткани может быть представлена в виде чисел и гистограмм. Для измерения плотности используют шкалу Хаунсвильда с диапазоном свыше 4000 единиц. За нулевой уровень плотности принята плотность воды. Плотность костей колеблется от +800 до +3000 единиц H (Хаунсвильда), паренхиматозных тканей – в пределах 40-80 ед Н, воздуха и газов - около -1000 ед H.
Плотные образования на КТ видны более светлыми и называются гиперденсивными, менее плотные видны более светлыми и называются гиподенсивными.
Для усиления контрастности при КТ также используют контрастные вещества. Введенные внутривенно иодистые соединения улучшают визуализацию патологических очагов в паренхиматозных органов.
Важным преимуществом современных компьютерных томографов является возможность по серии двухмерных изображений реконструировать трехмерное изображение объекта.
2. Радионуклидные методы исследования
Возможность получения искусственных радиоактивных изотопов позволила расширить сферу применения радиоактивных индикаторов в различных отраслях науки, в том числе и в медицине. Радионуклидная визуализация основана на регистрации излучения, испускаемого находящимся внутри пациента радиоактивным веществом. Таким образом, общее между рентген- и радионуклидной диагностикой – использование ионизирующего излучения.
Радиоактивные вещества, называемые радиофармацевтическими препаратами (РФП), могут использоваться как в диагностических, так и в терапевтических целях. Все они имеют в своем составе радионуклиды – нестабильные атомы, спонтанно распадающиеся с выделением энергии. Идеальный радиофармпрепарат накапливается только в органах и структурах, предназначенных для визуализации. Накопление РФП может обусловливаться, например, метаболическими процессами (молекула-носитель может быть частью метаболической цепочки) либо локальной перфузией органа. Возможность изучения физиологических функций параллельно с определением топографо-анатомических параметров – главное преимущество радионуклидных методов диагностики.
Для визуализации используют радионуклиды, испускающие гамма-кванты, так как альфа- и бета-частицы имеют низкую проникающую способность в тканях.
В зависимости от степени накопления РФП различают «горячие» очаги (с повышенным накоплением) и «холодные» очаги (с пониженным накоплением или его отсутствием).
Существует несколько различных методов радионуклидного исследования.
Целью (общей) изучения данного раздела является умение интерпретировать принципы получения радионуклидного изображения и предназначение различных радионуклидных методов исследования.
Для этого необходимо уметь:
1) интерпретировать принципы получения изображения при сцинтиграфии, эмиссионной компьютерной томографии (однофотонной и позитронной);
2) интерпретировать принципы получения радиографических кривых;
2) трактовать предназначение сцинтиграфии, эмиссионной компьютерной томографии, радиографии.
Сцинтиграфия – самый распространенный метод радионуклидной визуализации. Исследование проводится с помощью гамма-камеры. Основным ее компонентом является дисковидный сцинтилляционный кристалл йодида натрия большого диаметра (около 60 см). Этот кристалл является детектором, улавливающим гамма-излучение, испускаемое РФП. Перед кристаллом со стороны пациента располагается специальное свинцовое защитное устройство – коллиматор, определяющий проекцию излучения на кристалл. Параллельно расположенные отверстия на коллиматоре способствуют проецированию на поверхность кристалла двухмерного отображения распределения РФП в масштабе 1:1.
Гамма-фотоны при попадании на сцинтилляционный кристалл вызывают на нем вспышки света (сцинтилляции), которые передаются на фотоумножитель, генерирующий электрические сигналы. На основании регистрации этих сигналов реконструируется двухмерное проекционное изображение распределения РФП. Окончательное изображение может быть представлено в аналоговом формате на фотопленке. Однако большинство гамма-камер позволяет создавать и цифровые изображения.
Большинство сцинтиграфических исследований выполняются после внутривенного введения РФП (исключение – вдыхание радиоактивного ксенона при ингаляционной сцинтиграфии легких).
При перфузионной сцинтиграфии легких используются меченные 99mТс макроагрегаты альбумина или микросферы, которые задерживаются в мельчайших легочных артериолах. Получают изображения в прямых (передней и задней), боковых и косых проекциях.
Сцинтиграфия скелета выполняется с помощью меченных Тс99m дифосфонатов, накапливающихся в метаболически активной костной ткани.
Для исследования печени применяют гепатобилисцинтиграфию и гепатосцинтиграфию. Первый метод изучает жёлчеобразовательную.и желчевыделительную функцию печени и состояние желчевыводящих путей – их проходимость, накопительную и сократительную способность желчного пузыря, и представляет собой динамическое сцинтиграфическое исследование. В его основе лежит способность гепатоцитов поглощать из крови и транспортировать в составе желчи некоторые органические вещества.
Гепатосцинтиграфия – статическая сцинтиграфия - позволяет оценить барьерную функцию печени и селезенки и основана на том, что звездчатые ретикулоциты печени и селезенки, очищая плазму, фагоцитируют частички коллоидного раствора РФП.
С целью исследования почек используются статическая и динамическая нефросцинтиграфия. Суть метода заключается в получении изображения почек благодаря фиксации в них нефротропных РФП.
2.2. Эмиссионная компьютерная томография
Однофотонная эмиссионная компьютерная томография (ОФЭКТ) особенно широко используется в кардиологической и неврологической практике. Метод основан на вращении вокруг тела пациента обычной гамма-камеры. Регистрация излучения в различных точках окружности позволяет реконструировать секционное изображение.
Позитронная эмиссионная томография (ПЭТ), в отличие от других радионуклидных методов обследования, основывается на использовании испускаемых радионуклидами позитронов. Позитроны, имея одинаковую массу с электронами, заряжены положительно. Испускаемый позитрон сразу же взаимодействует с ближайшим электроном (эта реакция называется аннигиляцией), что приводит к возникновению двух гамма-фотонов, распространяющихся в противоположных направлениях. Эти фотоны регистрируются специальными детекторами. Информация затем передается на компьютер и преобразуется в цифровое изображение.
ПЭТ позволяет осуществлять количественную оценку концентрации радионуклидов и тем самым изучать метаболические процессы в тканях.
2.3. Радиография
Радиография – метод оценки функции органа посредством внешней графической регистрации изменений радиоактивности над ним. В настоящее время этот метод применяется в основном для изучения состояния почек – радиоренография. Два сцинтиграфических детектора регистрируют излучение над правой и левой почками, третий – над сердцем. Проводят качественный и количественный анализ полученных ренограмм.
3. Ультразвуковые методы исследования
Под ультразвуком подразумевают звуковые волны с частотой свыше 20000 Гц, т.е. выше порога слышимости человеческого уха. Ультразвук используется в диагностике для получения секционных изображений (срезов) и измерения скорости тока крови. Наиболее часто в радиологии используются частоты в диапазоне 2-10 МГц (1 Мгц = 1 миллион Гц). Методику ультразвуковой визуализации называют сонографией. Технологию измерения скорости кровотока называют допплерографией.
Цель (общая) изучения данного раздела: научиться интерпретировать принципы получения ультразвукового изображения и предназначение различных ультразвуковых методов исследования.
Для этого необходимо уметь:
1) интерпретировать принципы получения информации при сонографии и допплерографии;
2) трактовать предназначение сонографии и допплерографии.
3.1. Сонография
Сонография осуществляется пропусканием через тело пациента узконаправленного ультразвукового луча. Ультразвук генерируется специальным датчиком, обычно помещаемым на кожу пациента над обследуемой анатомической областью. Датчик содержит один или несколько пьезоэлектрических кристаллов. Подача электрического потенциала на кристалл приводит к его механической деформации, а механическое сжатие кристалла генерирует электрический потенциал (обратный и прямой пьезоэлектрический эффект). Механические колебания кристалла генерируют ультразвук, который отражается от различных тканей и возвращается назад к датчику в виде эха, генерирует механические колебания кристалла и, следовательно, электрические сигналы той же частоты, что и эхо. В таком виде эхо записывается.
Интенсивность ультразвука постепенно уменьшается с прохождением через ткани тела пациента. Основной причиной этого является поглощение ультразвука в виде тепла.
Непоглощенная часть ультразвука может быть рассеяна или отражена тканями назад к датчику в виде эха. Легкость прохождения ультразвука через ткани частично зависит от массы частиц (которая определяет плотность ткани) и частично - от сил эластичности, притягивающих частицы друг к другу. Плотность и эластичность ткани вместе определяют ее так называемое акустическое сопротивление.
Чем больше изменение акустического сопротивления, тем больше отражение ультразвука. Большое различие в акустическом сопротивлении существует на границе мягкая ткань - газ, и почти весь ультразвук отражается от нее. Поэтому для устранения воздуха между кожей пациента и датчиком применяется специальный гель. По этой же причине сонография не позволяет визуализировать области, расположенные за кишечником (так как кишечник заполнен газом), и содержащую воздух легочную ткань. Существует также и относительно большое различие в акустическом сопротивлении между мягкими тканями и костями. Большинство костных структур, таким образом, препятствует проведению сонографии.
Простейший способ отображения записанного эха - так называемый А-режим (амплитудный режим). В данном формате эхо с различной глубины представляется в виде вертикальных пиков на горизонтальной линии, отражающей глубину. Сила эха определяет высоту или амплитуду каждого из показанных пиков. А-режимный формат дает только одномерное изображение изменения акустического сопротивления вдоль линии прохождения ультразвукового луча и крайне ограниченно используется в диагностике (в настоящее время - только для исследования глазного яблока).
Альтернативой А-режиму является М-режим (М - motion, движение). На таком изображении ось глубины на мониторе ориентируется вертикально. Различные эхосигналы отражаются в виде точек, яркость которых определяется силой эха. Эти яркие точки перемещаются поперек экрана слева направо, создавая таким образом яркие кривые, показывающие изменение положения отражающих структур с течением времени. Кривые М-режима предоставляют детальную информацию о динамике поведения расположенных вдоль ультразвукового луча отражающих структур. Данный метод используется для получения динамических одномерных изображений сердца (стенок камер и створок сердечных клапанов).
Наиболее широко в радиологии используется В-режим (В - brightness, яркость). Данный термин означает, что эхо изображается на экране в виде точек, яркость которых определяется силой эха. В-режим дает двухмерное секционное анатомическое изображение (срез) в реальном масштабе времени. На экране создаются изображения в виде прямоугольника или сектора. Изображения динамичны, на них можно наблюдать такие явления, как респираторные движения, пульсация сосудов, сердечные сокращения и движения плода. Современные аппараты для ультразвуковых исследований используют цифровые технологии. Генерируемый в датчике аналоговый электрический сигнал оцифровывается. Окончательное изображение на мониторе представлено оттенками серой шкалы. Более светлые участки при этом называются гиперэхогенными, более темные – гипо- и анэхогенными.
3.2. Допплерография
Измерение скорости кровотока с использованием ультразвука основано на физическом явлении, согласно которому частота звука, отраженного от движущегося объекта, изменяется по сравнению с частотой посланного звука при ее восприятии неподвижным приемником (допплеровский эффект).
При допплеровском исследовании кровеносных сосудов через тело пропускается генерируемый специальным допплеровским датчиком ультразвуковой луч. При пересечении этим лучом сосуда или сердечной камеры небольшая часть ультразвука отражается от эритроцитов. Частота волн эха, отраженного от этих клеток, движущихся в направлении датчика, будет выше, чем у волн, испускаемых им самим. Разница между частотой принятого эха и частотой генерируемого датчиком ультразвука называется допплеровским частотным сдвигом, или допплеровской частотой. Данный частотный сдвиг прямо пропорционален скорости кровотока. При измерении потока частотный сдвиг непрерывно измеряется прибором; большинство подобных систем автоматически преобразует изменение частоты ультразвука в относительную скорость кровотока (например, в м/с), используя которую можно вычислить истинную скорость кровотока.
Допплеровский частотный сдвиг обычно лежит в пределах различимого человеческим ухом диапазона частот. Поэтому вся допплерографическая аппаратура оборудована динамиками, позволяющими слышать допплеровский частотный сдвиг. Этот "звук кровотока" используется как для обнаружения сосудов, так и для полуколичественной оценки характера тока крови и его скорости. Однако такое звуковое отображение мало пригодно для точной оценки скорости. В связи с этим при допплеровском исследовании обеспечивается визуальное отображение скорости потока - обычно в виде графиков или в форме волн, где по оси ординат отложена скорость, а по оси абсцисс - время. В случаях, когда ток крови направлен к датчику, график допплерограммы располагается над изолинией. Если ток крови направлен от датчика, график располагается под изолинией.
Существует два принципиально различных варианта излучения и приема ультразвука при использовании допплеровского эффекта: постоянноволновой и импульсный. В постоянноволновом режиме допплеровский датчик использует два отдельных кристалла. Один кристалл непрерывно излучает ультразвук, а другой - принимает эхо, что позволяет измерять очень большие скорости. Поскольку происходит одновременное измерение скоростей на большом диапазоне глубин, невозможно выборочно измерить скорость на определенной, заранее заданной глубине.
В импульсном режиме один и тот же кристалл излучает и принимает ультразвук. Ультразвук испускается короткими импульсами, а эхо регистрируется в периоды ожидания между передачами импульсов. Интервал времени между передачей импульса и приемом эха определяет глубину, на которой измеряются скорости. Импульсный допплер позволяет измерять скорости потоков в очень малых объемах (в так называемых контрольных объемах), расположенных вдоль ультразвукового луча, но наибольшие скорости, доступные для измерения, значительно ниже тех, которые можно измерить, используя постоянноволновой допплер.
В настоящее время в радиологии используют так называемые дуплексные сканеры, которые объединяют в себе сонографию и импульсную допплерографию. При дуплексном сканировании направление допплеровского луча накладывается на изображение в В-режиме, и таким образом можно, используя электронные маркеры, выбрать размер и расположение контрольного объема вдоль направления луча. При перемещении электронного курсора параллельно направлению тока крови автоматически измеряется допплеровский сдвиг и показывается истинная скорость потока.
Цветная визуализация кровотока - дальнейшее развитие дуплексного сканирования. Цвета накладываются на изображение в В-режиме, показывая наличие перемещающейся крови. Неподвижные ткани отображаются оттенками серой шкалы, а сосуды - цветной (оттенками голубого, красного, желтого, зеленого, определяемыми относительной скоростью и направлением кровотока). Цветное изображение дает представление о наличии различных сосудов и потоков крови, но обеспечиваемая данным методом количественная информация менее точна, чем при постоянноволновом или импульсном допплеровском исследовании. Поэтому цветная визуализация кровотока всегда комбинируется с импульсной допплерографией.
4. Магнитно-резонансные методы исследования
Цель (общая) изучения данного раздела: научиться интерпретировать принципы получения информации при магнитно-резонансных методов исследования и трактовать их предназначение.
Для этого необходимо уметь:
1) интерпретировать принципы получения информации при магнитно-резонансной томографии и магнитно-резонансной спектроскопии;
2) трактовать предназначение магнитно-резонансной томографии и магнитно-резонансной спектроскопии.
4.1. Магнитно-резонансная томография
Магнитно-резонансная томография (МРТ) - самый «молодой» из радиологических методов. Магнитно-резонансные томографы позволяют создать изображения сечений любой части тела в трех плоскостях.
Основными компонентами МР-томографа являются сильный магнит, радиопередатчик, приемная радиочастотная катушка и компьютер. Внутренняя часть магнита представляет собой цилиндрической формы туннель, достаточно большой для размещения внутри него взрослого человека.
Для МР-томографии используются магнитные поля силой от 0,02 до 3 Тл (тесла). Большинство МР-томографов имеют магнитное поле, ориентированное параллельно длинной оси тела пациента.
Когда пациента помещают внутрь магнитного поля, все ядра водорода (протоны) его тела разворачиваются в направлении этого поля (подобно стрелке компаса, ориентирующейся на магнитное поле Земли). Помимо этого, магнитные оси каждого протона начинают вращаться вокруг направления внешнего магнитного поля. Это вращательное движение называют прецессией, а его частоту - резонансной частотой.
Большинство протонов ориентировано параллельно внешнему магнитному полю магнита ("параллельные протоны"). Остальные прецессируют антипараллельно внешнему магнитному полю ("антипараллельные протоны"). В результате ткани пациента намагничиваются, и их магнетизм ориентируется точно параллельно внешнему магнитному полю. Величина магнетизма определяется избытком параллельных протонов. Избыток пропорционален силе внешнего магнитного поля, но всегда он крайне мал (порядка 1-10 протонов на 1 миллион). Магнетизм также пропорционален числу протонов в единице объема ткани, т.е. плотности протонов. Огромное число (примерно 1022 в мл воды) содержащихся в большинстве тканей ядер водорода обусловливает магнетизм, достаточный для того, чтобы индуцировать электрический ток в воспринимающей катушке. Но обязательным условием индуцирования тока в катушке является изменение силы магнитного поля. Для этого необходимы радиоволны. При пропускании через тело пациента коротких электромагнитных радиочастотных импульсов магнитные моменты всех протонов разворачиваются на 90º, но только в том случае, если частота радиоволн равна резонансной частоте протонов. Это явление и называют магнитным резонансом (резонанс - синхронные колебания).
Воспринимающая катушка расположена вне пациента. Магнетизм тканей индуцирует в катушке электрический ток, и этот ток называют МР-сигналом. Ткани с большими магнитными векторами индуцируют сильные сигналы и выглядят на изображении яркими - гипертинтенсивными, а ткани с малыми магнитными векторами индуцируют слабые сигналы и на изображении выглядят темными – гипоинтенсивными.
Как было сказано ранее, контраст на МР-изображениях определяется различиями в магнитных свойствах тканей. Величина магнитного вектора, прежде всего, определяется плотностью протонов. Объекты с малым количеством протонов, например, воздух, индуцируют очень слабый МР-сигнал и представляются на изображении темными. Вода и другие жидкости должны быть яркими на МР-изображениях как имеющие очень высокую плотность протонов. Однако, в зависимости от режима, используемого для получения МР-изображения, жидкости могут давать как яркие, так и темные изображения. Причина этого в том, что контрастность изображения определяется не только плотностью протонов. Определенную роль играют и другие параметры; два наиболее важных из них - Т1 и Т2.
Для реконструкции изображения необходимо несколько МР-сигналов, т.е. через тело пациента должно быть передано несколько радиочастотных импульсов. В промежутке между подачей импульсов протоны подвергаются двум различным процессам релаксации - Т1 и Т2. Быстрое затухание индуцированного сигнала - частично результат Т2-релаксации. Релаксация - это последствие постепенного исчезновения намагниченности. Жидкости и подобные жидкостям ткани обычно имеют длительное время Т2, а твердые ткани и вещества - короткое время Т2. Чем длиннее Т2, тем ярче (светлее) выглядит ткань, т.е. дает более интенсивный сигнал. МР-изображения, в которых контрастность преимущественно определяется различиями в Т2, называют Т2-взвешенными изображениями.
T1-релаксация - более медленный по сравнению с Т2-релаксацией процесс, заключающийся в постепенном выстраивании отдельных протонов вдоль направления магнитного поля. Таким образом восстанавливается предшествующее радиочастотноному импульсу состояние. Величина Т1 в значительной мере зависит от размера молекул и их мобильности. Как правило, Т1 минимально для тканей с молекулами среднего размера и средней мобильности, например, для жировой ткани. Меньшие, более мобильные молекулы (как в жидкости) и большие, менее мобильные молекулы (как в твердых телах) имеют более высокое значение Т1.
Ткани с минимальным Т1 будут индуцировать наиболее сильные МР-сигналы (например, жировая ткань). Таким образом, эти ткани будут на изображении яркими. Ткани с максимальным Т1 будут, соответственно, индуцировать наиболее слабые сигналы и будут темными. МР-изображения, в которых контрастность преимущественно определяется различиями в Т1, называют Т1-взвешенными изображениями.
Различия в силе МР-сигналов, полученных от различных тканей сразу после воздействия радиочастотного импульса, отражают различия в плотности протонов. На изображениях, взвешенных по протонной плотности, ткани с максимальной плотностью протонов индуцируют наиболее сильный МР-сигнал и выглядят самыми яркими.
Таким образом, в МРТ существует значительно больше возможностей для изменения контрастности изображений, чем в альтернативных методиках – таких, как компьютерная томография и сонография.
Как уже упоминалось, радиочастотные импульсы индуцируют МР-сигналы только в том случае, если частота импульсов точно соответствует резонансной частоте протонов. Данный факт позволяет получать МР-сигналы из выбранного заранее тонкого слоя тканей. Специальные катушки создают небольшие дополнительные поля таким образом, что сила магнитного поля линейно увеличивается в одном направлении. Резонансная частота протонов пропорциональна силе магнитного поля, поэтому она также будет увеличиваться линейно в этом же направлении. Подавая радиочастотные импульсы с установленным заранее узким диапазоном частот, можно записывать МР-сигналы только от тонкого слоя ткани, диапазон резонансных частот которого соответствует диапазону частот радиоимпульсов.
В МР-томографии интенсивность сигнала от неподвижной крови определяется выбранной "взвешенностью" изображения (на практике неподвижная кровь в большинстве случаев визуализируется яркой). В отличие от нее циркулирующая кровь практически не генерирует МР-сигнал, являясь, таким образом, эффективным «негативным» контрастным средством. Просветы сосудов и камеры сердца отображаются темными и четко отграничиваются от окружающих их более ярких неподвижных тканей.
Существуют, однако, специальные методики МРТ, позволяющие отобразить циркулирующую кровь яркой, а неподвижные ткани - темными. Они используются в МР-ангиографии (МРА).
При МРТ широко используются контрастные средства. Все они обладают магнитными свойствами и изменяют интенсивность изображения тканей, в которых они находятся, укорачивая релаксацию (Т1 и/или Т2) окружающих их протонов. Наиболее часто используемые контрастные средства содержат парамагнитный ион металла гадолиния (Gd3+), связанный с молекулой-носителем. Эти контрастные средства вводятся внутривенно и распределяются в организме подобно водорастворимым рентгенконтрастным средствам.
4.2. Магнитно-резонансная спектроскопия
МР-установка с силой магнитного поля не менее 1,5 Тл позволяет проводить магнитно-резонансную спектроскопию (МРС) in vivo. МРС основывается на том факте, что находящиеся в магнитном поле атомные ядра и молекулы вызывают локальные изменения в силе поля. Ядра атомов одного и того же типа (например, водорода) имеют резонансные частоты, слегка варьирующие в зависимости от молекулярного расположения ядер. Индуцируемый после воздействия радиочастотного импульса МР-сигнал будет содержать эти частоты. В результате частотного анализа сложного МР-сигнала создается частотный спектр, т.е. амплитудно-частотная характеристика, показывающая имеющиеся в нем частоты и соответствующие им амплитуды. Такой частотный спектр может предоставить информацию о наличии и относительной концентрации различных молекул.
В МРС могут использоваться несколько видов ядер, но два наиболее часто исследуемых - это ядра водорода (1Н) и фосфора (31Р). Возможна комбинация МР-томографии и МР-спектроскопии. МРС in vivo позволяет получать информацию о важных метаболических процессах в тканях, но этот метод до сих пор еще далек от повседневного применения в клинической практике.

5. Общие принципы выбора оптимального лучевого метода исследования
Цель изучения данного раздела соотвествует его названию - научиться трактовать общие принципы выбора оптимального лучевого метода исследования.
Как показано в предыдущих разделах, существует четыре группы лучевых методов исследования – рентгенологические, ультразвуковые, радионуклидные и магнитно-резонансные. Для эффективного использования их в диагностике различных заболеваний врачу-лечебнику необходимо уметь выбрать из этого множества методов оптимальный для конкретной клинической ситуации. При этом следует руководствоваться такими критериями, как:
1) информативность метода;
2) биологическое действие излучений, применяемых при этом методе;
3) доступность и экономичность метода.

Информативность лучевых методов исследования, т.е. их способность обеспечить врача информацией о морфологическом и функциональном состоянии различных органов, является основным критерием выбора оптимального лучевого метода исследования и будет подробно освещена в разделах второй части нашего учебника.
Сведения о биологическом действии излучений, применяемых при том или другом лучевом методе исследования, относятся к исходному уровню знаний-умений, осваиваемых в курсе медицинской и биологической физики. Однако, учитывая важность этого критерия при назначении пациенту лучевого метода, следует подчеркнуть, что все рентгенологические и радионуклидные методы связаны с ионизирующими излучениями и соответственно вызывают ионизацию в тканях организма пациента. При правильном выполнении этих методов и соблюдении принципов радиационной безопасности они не представляют угрозы здоровью и жизни человека, т.к. все обусловленные ими изменения являются обратимыми. В то же время необоснованно частое их применение может привести к увеличению суммарной дозы облучения, полученной пациентом, возрастанию риска возникновения опухолей и развитию в его организме местных и общих лучевых реакций, о которых вы подробно узнаете из курсов лучевой терапии и радиационной гигиены.
Основным биологическим эффектом при проведении ультразвуковых исследований и магнитно-резонансной томографии является нагревание. Более выражен этот эффект при МРТ. Поэтому первые три месяца беременности некоторыми авторами расцениваются как абсолютное противопоказание для МРТ из-за риска перегревания плода. Еще одним абсолютным противопоказанием к применению этого метода является наличие ферромагнитного объекта, перемещение которого может быть опасным для пациента. Наиболее важными являются внутричерепные ферромагнитные клипсы на сосудах и внутриглазные ферромагнитные инородные тела. Наибольшая связанная с ними потенциальная опасность - кровотечение. Наличие кардиостимуляторов также является абсолютным противопоказанием для МРТ. На функционирование этих приборов может повлиять магнитное поле, и, более того, в их электродах могут индуцироваться электрические токи, способные нагреть эндокард.
Третий критерий выбора оптимального метода исследования – доступность и экономичность – явлется менее важным, чем первые два. Однако, направляя пациента на обследование, любой врач должен помнить, что начинать следует с более доступных, распространенных и менее дорогих методов. Соблюдение этого принципа, прежде всего, - в интересах пациента, которому диагноз будет установлен в более короткий срок.
Таким образом, при выборе оптимального лучевого метода исследования врач должен, главным образом, руководствоваться его информативностью, а из нескольких методов, близких по информативности, назначить более доступный и обладающий меньшим воздействием на организм пациента.

Создан 21 дек 2006