Где применяется вольфрам высокой плотности. Вольфрам - что за металл? Свойства и сферы применения

Какова плотность вольфрама? На чем основывается его применение? Будем искать ответы на поставленные вопросы вместе.

Положение в ПС

Данный химический элемент располагается в шестой группе периодической системы. Его порядковый номер 74, величина относительной атомной массы 183,85. Особые определяются его высокой температурой плавления. Он считается одним из В природном вольфраме содержится пять стабильных изотопов, которые имеют сходные массовые числа от 180 до 186.

Открытие элемента

Данный химический элемент был обнаружен в конце 18 века. К. Шееле удалось выделить его из минерала, в котором металл содержался в виде оксида. Долгое время вольфрам практически не имел промышленного применения, был не востребован. Только в середине 19 века металл начали применять как добавку при изготовлении прочной стали.

В земной коре данный элемент находится в незначительном количестве. В свободном виде не встречается, располагается только в виде минералов. В промышленных масштабах применяют его оксиды.

Физические свойства

19300 - это плотность вольфрама кг/м3 при нормальных условиях. Металл образует объемно-концентрическую кубическую решетку. Он имеет неплохой показатель теплоемкости. Высокий температурный коэффициент вольфрама объясняет его тугоплавкость. Температура плавления составляет 3380 градусов по шкале Цельсия. На механические свойства оказывает влияние его предварительная обработка. Учитывая, плотность вольфрама при 20 с 19, 3 г/см3, его можно довести до состояния монокристаллического волокна. Данное свойство используется при изготовлении из него проволоки. В условиях комнатной температуры вольфрам имеет незначительную пластичность.

Особенности вольфрама

Существенная плотность вольфрама придает данному металлу определенные свойства. У него достаточно невысокая скорость испарения, высокая точка кипения. По показателю вольфрам ниже аналогичного показателя меди в три раза. Именно большая плотность вольфрама ограничивает сферы его использования. Кроме того, на использовании сказывается его повышенная ломкость при низких температурах, неустойчивость к окислению кислородом воздуха при незначительных температурах.

По внешним характеристикам вольфрам имеет сходство со сталью. Он применяется для изготовления сплавов, характеризующихся повышенной прочностью. Обработка вольфрама осуществляется только при повышенной температуре.

Марки вольфрама

Не только плотность вольфрама, но и добавки, используемые в металлургии, отражаются на марке данного металла. Например, ВА предполагает смесь вольфрама с алюминием и кремнием. Для получаемой марки характерна повышенная температура начальной рекристаллизации, прочность после отжига.

ВЛ предполагает добавление к вольфраму в качестве присадки оксида лантана, повышающей эмиссионные свойства металла.

МВ - это сплав вольфрама и молибдена. Подобный состав повышает прочность, сохраняет пластичность металла после отжига.

Сфера использования вольфрама

Уникальные свойства данного металла предопределяют его применение. В промышленных объемах он используется и в чистом виде, и в качестве сплавов.

Вольфрам в быту используется в основном в электротехнических целях.

Именно он применяется как основной компонент (легирующий элемент) в процессе производства быстрорежущих сталей. В среднем содержание вольфрама составляет от девяти до двадцати процентов. Кроме того, он входит в состав инструментальных сталей.

Подобные вилы сталей применяют для изготовления фрез, сверл, пуансонов, штампов. Например, Р6М5 свидетельствуют о том, что сталь легирована кобальтом и молибденом. Кроме того, вольфрам содержится в которые подразделяют на вольфрамокобальтовые и вольфрамовые виды.

Вольфрам в быту в чистом виде практически не востребован. Карбид вольфрама представляет собой соединение этого металла с углеродом. Соединение отличается высокой твердостью, тугоплавкостью, а также износостойкостью. На базе карбида вольфрама изготавливают инструментальные производительные твердые сплавы, содержащие около 90 процентов вольфрама и около 10 процентов кобальта. Из твердых сплавов создают режущие части буровых и режущих инструментов.

Разновидности сталей на основе вольфрама

Износостойкие и основываются на тугоплавкости вольфрама. В промышленности распространены соединения вольфрама с хромом и кобальтом, которые называют стеллитами. Их путем наплавки наносят на изнашиваемые части деталей промышленных машин.

«Тяжелые» и контактные сплавы - это смеси вольфрама с серебром или с медью. Они считаются достаточно эффективными контактными материалами, поэтому применяются для производства рабочих деталей рубильников, электродов для осуществления точечной сварки, а также изготовления выключателей.

В виде проволоки, кованых изделий, ленты вольфрам используют в радиотехнике, в изготовлении электрических ламп, а также в рентгенотехнике. Именно этот металл считается лучшим материалом для создания спиралей и нитей накаливания.

Вольфрамовые прутки и проволока необходимы для изготовления электрических нагревателей для Нагреватели на основе вольфрама способны работать в атмосфере инертного газа, водорода, а также в вакууме.

Одной из важнейших отраслей использования вольфрама является сварка. Из него создают электроды, которые применяют для дуговой сварки. Получаемые электроды считаются неплавящимися.

Получение тугоплавкого металла

Сколько стоит вольфрам? Цена за кг находится в диапазоне от 900 до 1200 рублей. Его относят к группе редких металлических элементов. Кроме вольфрама сюда же причисляют рубидий, молибден. Редкие металлы имеют незначительные масштабы использования, учитывая их несущественное содержание в земной коре. Ни один из перечисленных металлов нельзя получить путем непосредственного восстановления из сырья. Для начала сырье перерабатывают на различные химические вещества. Отметим, что осуществляется и специальное дополнительное обогащение руд до их полноценной переработки.

В технологической цепочке получения редкого вольфрама выделяют три стадии. Сначала проводят разложение руды, отделяя извлекаемый металл от массы сырья, а также его концентрирование в осадке либо в растворе. Далее выполняется получение химически чистых соединений, проводится выделение, а также очистка химического вещества. На третьем этапе выделяют металл из очищенного от примесей оксида.

В качестве исходного сырья при изготовлении вольфрама выступает вольфрамит. Такая руда содержит около двух процентов чистого металла. Обогащение руды осуществляется путем флотации, гравитации, электромагнитной либо магнитной сепарации. После обогащения образуется вольфрамовый концентрат, в котором содержится около 65 процентов оксида вольфрама (6). Помимо металла, в таких концентратах содержатся примеси серы, меди, фосфора, мышьяка, висмута, сурьмы. Сколько стоит такой вольфрам? Цена за кг составляет около тысячи рублей. Чтобы изготовить вольфрамовый порошок, необходимо провести восстановление его ангидрида углеродом либо водородом.

В основном применяют метод гидрирования, так как углерод добавляет металлу хрупкости, негативно отражается на его обрабатываемости. Для изготовления вольфрамового порошка применяют специальные методы, которые позволяют анализировать состав, размер зерен, а также состав образуемых гранул.

Компактный водород в основном в виде слитков либо штабиков применяют как заготовки при изготовлении таких полуфабрикатов, как лента, проволока.

В настоящее время применяют две методики создания компактного вольфрама. Первый метод предполагает использование порошковой металлургии. По второй методике допускается применение дуговых электрических печей, предполагающих применение расходуемых электродов.

Самыми распространенными видами продукции, создаваемой из металлического вольфрама и имеющей особое значение, являются вольфрамовые прутки. Путем ковки их получают из штабиков на специальной ковочной машине. Применяют готовую продукцию в различных отраслях современной промышленности. К примеру, именно из них получают сварочные неплавящиеся электроды. Кроме того, вольфрамовые прутки применяют и при создании нагревателей. Они востребованы в газоразрядных приборах, электролампах.

Вольфрам. Химический элемент, символ W (лат. Wolframium, англ. Tungsten, франц. Tungstene, нем. Wolfram , от нем. Wolf Rahm - волчья слюна, пена ). Имеет порядковый номер 74, атомный вес 183, 85, плотность 19, 30 г/см 3 , температуру плавления 3380 ° С, температуру кипения 5680 ° С.

Вольфрам - металл светло-серого цвета, при комнатной температуре обладает высокой коррозионной стойкостью в воде и на воздухе, а также в кислотах и щелочах. Он начинает немного окисляться на воздухе при 400-500 ° С (при температуре красного каления) и интенсивно окисляется при более высоких температурах. Вольфрам образует два устойчивых окисла: WO 3 и WO 2 . С водородом вольфрам не взаимодействует практически до самого плавления, а с азотом начинает вступать в реакцию только при температурах более 2000 ° С. С хлором вольфрам образует хлориды WCl 2 , WCl 4 , WCl 5 , WCl 6 . Твёрдый углерод и некоторые содержащие его газы при 1100-1200 ° С реагируют с вольфрамом, образуя карбиды WC и W 2 C.

Вольфрам растворяется в смесях плавиковой и азотной кислот , также растворяется в расплавленных щелочах при доступе воздуха и особенно окислителей. Отдельные кислоты на вольфрам не действуют.

Вольфрам очень высокой чистоты пластичен при комнатной температуре. По прочности при высоких температурах вольфрам превосходит все остальные металлы. На механические свойства вольфрама сильное влияние оказывают примеси. Содержание в металле небольших количеств примесей делает его очень хрупким (хладноломким). Наиболее отрицательное влияние на свойства вольфрама оказывают кислород, азот, углерод, железо, фосфор, кремний.

Вольфрам широко используют в радиоламповой, радиотехнической и электронно-вакуумной промышленности для изготовления нитей накаливания, нагревателей и экранов высокотемпературных вакуумных печей, электрических контактов, катодов рентгеновских трубок.

В металлургии вольфрамом легируют стали и используют при изготовлении твёрдых сплавов (например, металлокерамический сплав на основе карбида вольфрама - победит), в химической промышленности из него изготовляют краски и катализаторы, в ракетной технике - изделия, работающие при очень высоких температурах, в атомной промышленности - тигли для хранения радиоактивных материалов, т.к. защитное действие у сплава вольфрама, никеля и меди выше, чем у свинца . Сплавы с металлами получают спеканием, а не давлением потому, что при температуре плавления вольфрама многие металлы превращаются в пар.

Вольфрам применяют также для нанесения покрытий: на детали, работающие при очень высоких температурах в восстановительной и нейтральной средах; на литейные формы из молибдена , используемые для получения прутков сильно радиоактивных металлов; на детали, работающие на трение.

Также распространены сплавы на основе вольфрама с рением. Добавка рения (до 20-25%) снижает температуру перехода вольфрама в хрупкое состояние, резко повышает его пластичность при нормальной температуре и улучшает технологические свойства. Сплавы получают методом порошковой металлургии и плавлением в электродуговых вакуумных печах. Из этих сплавов изготовляют термопары, электрические контакты.

Сплавы вольфрама с молибденом пригодны для работы при температурах более 3000 ° С, применяют их для сопел реактивных двигателей.

При нагревании вольфрама выше 400 ° С на его поверхности образуется порошкообразный окисел жёлтого цвета, который заметно испаряется при температурах более 800 ° С. Поэтому вольфрам может быть использован как высокопрочный материал при высоких температурах только при надёжной защите поверхности изделия от воздействия окисляющей среды или при работе в нейтральной среде или в вакууме. Для кратковременной защиты вольфрама от окисления при 2000-3000 ° С применяют керамические эмалевидные покрытия, содержащие тугоплавкие соединения в качестве основного заполнителя им тугоплавкое связующее стекло.

Мировое производство вольфрама - примерно 32 тыс. т в год. С начала нашего века оно не раз испытывало резкие взлеты и столь же крутые спады. На диаграмме видно, что пики на кривой производства в точности отвечают кульминационным моментам первой и второй мировых войн. И сейчас вольфрам является сугубо стратегическим металлом

Диаграмма мирового производства вольфрама (в тыс. т) в первой половине XX в.
Из вольфрамовой стали и других сплавов, содержащих вольфрам или его карбиды, изготовляют танковую броню, оболочки торпед и снарядов, наиболее важные детали самолетов и двигателей.

Вольфрам - непременная составная часть лучших марок инструментальной стали. В целом металлургия поглощает почти 95% всего добываемого вольфрама. (Характерно, что она широко использует не только чистый вольфрам, но главным образом более дешевый ферровольфрам - сплав, содержащий 80% W и около 20% Fe; получают его в электродуговых печах).

Вольфрамовые сплавы обладают многими замечательными качествами. Так называемый тяжелый металл (из вольфрама, никеля и меди) служит для изготовления контейнеров, в которых хранят радиоактивные вещества. Его защитное действие на 40% выше, чем у свинца. Этот сплав применяют и при радиотерапии, так как он создает достаточную защиту при сравнительно небольшой толщине экрана.

Сплав карбида вольфрама с 16% кобальта настолько тверд, что может частично заменить алмаз при бурении скважин.

Псевдосплавы вольфрама с медью и серебром - превосходный материал для рубильников и выключателей электрического тока высокого напряжения: они служат в шесть раз дольше обычных медных контактов.

О применении вольфрама в волосках электроламп говорилось в начале статьи. Незаменимость вольфрама в этой области объясняется не только его тугоплавкостью, но и пластичностью. Из одного килограмма вольфрама вытягивается проволока длиной 3,5 км, т.е. этого килограмма достаточно для изготовления нитей накаливания 23 тыс. 60-ваттных лампочек. Именно благодаря этому свойству мировая электротехническая промышленность потребляет всего около 100 т вольфрама в год.

В последние годы важное практическое значение приобрели химические соединения вольфрама. В частности, фосфорно-вольфрамовая гетерополикислота применяется для производства лаков и ярких, устойчивых на свету красок. Раствор вольфрамата натрия Na2WO4 придает тканям огнестойкость и водонепроницаемость, а вольфраматы щелочноземельных металлов, кадмия и редкоземельных элементов применяются при изготовлении лазеров и светящихся красок.

Прошлое и настоящее вольфрама дают все основания считать его металлом-тружеником.

ОПРЕДЕЛЕНИЕ

Вольфрам - семьдесят четвертый элемент Периодической таблицы. Обозначение - W от латинского «wolframium». Расположен в шестом периоде, VIB группе. Относится к металлам. Заряд ядра равен 74.

По распространенности в земной коре вольфрам уступает хрому, но превосходит молибден. Природные соединения вольфрама в большинстве случаев представляют собой вольфраматы - соли вольфрамовой кислоты H 2 WO 4 . Так, важнейшая вольфрамовая руда - вольфрамит - состоит из вольфраматов железа и марганца. Часто встречается также минерал шеелит CaWO 4 .

Вольфрам - тяжелый белый металл (рис. 1) плотностью 19,3 г/см 3 . Его температура плавления (около 3400 o С), выше, чем температура плавления всех других металлов. Вольфрам можно сваривать и вытягивать в тонкие нити.

Рис. 1. Вольфрам. Внешний вид.

Атомная и молекулярная масса вольфрама

ОПРЕДЕЛЕНИЕ

Относительной молекулярная масса вещества (M r) - это число, показывающее, во сколько раз масса данной молекулы больше 1/12 массы атома углерода, а относительная атомная масса элемента (A r) — во сколько раз средняя масса атомов химического элемента больше 1/12 массы атома углерода.

Поскольку в свободном состоянии вольфрам существует в виде одноатомных молекул W, значения его атомной и молекулярной масс совпадают. Они равны 183,84.

Изотопы вольфрама

Известно, что в природе вольфрам может находиться в виде пяти стабильных изотопов 180 W, 182 W, 183 W, 184 W и 186 W.Их массовые числа равны 180, 182, 183, 184 и 186 соответственно. Ядро атома изотопа вольфрама 180 W содержит семьдесят четыре протона и сто шесть нейтронов, а остальные отличаются от него только числом нейтронов.

Существуют искусственные нестабильные изотопы вольфрама с массовыми числами от 158-ми до 192-х, а также одиннадцать изомерных состояния ядер.

Ионы вольфрама

На внешнем энергетическом уровне атома вольфрама имеется шесть электронов, которые являются валентными:

1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 4d 10 4f 14 5s 2 5р 6 5d 4 6s 2 .

В результате химического взаимодействия вольфрам отдает свои валентные электроны, т.е. является их донором, и превращается в положительно заряженный ион:

W o -2e → W 2+ ;

W o -3e → W 3+ ;

W o -4e → W 4+ ;

W o -5e → W 5+ ;

W o -6e → W 6+ .

Молекула и атом вольфрама

В свободном состоянии вольфрам существует в виде одноатомных молекул W. Приведем некоторые свойства, характеризующие атом и молекулу вольфрама:

Сплавы вольфрама

Большая часть добываемого вольфрама расходуется в металлургии для приготовления специальных сталей и сплавов. Быстрорежущая инструментальная сталь содержит до 20% вольфрама и обладает способностью самозакаливаться. Такая сталь не теряет своей твердости даже при нагревании докрасна.

Кроме быстрорежущих широко применяются другие вольфрамовые и хромовольфрамовые стали. Например, сталь, содержащая от 1 до 6% вольфрама и до 2% хрома, применяется для изготовления пил, фрез, штампов.

Как самый тугоплавкий металл вольфрам входит в состав ряда жаропрочных сплавов. В частности, его сплавы с кобальтом и хромом - стеллиты - обладают высокими твердостью, износоустойчивостью, жаростойкостью. Сплавы вольфрама с медью сочетают в себе высокие электрическую проводимость, теплопроводность и износоустойчивость. Они применяются для изготовления рабочих частей рубильников, выключателей, электродов для точечной сварки.

Примеры решения задач

ПРИМЕР 1


Вольфрам относится к тугоплавким металлам, которые сравнительно мало распространены в земной коре. Так, содержание в земной коре (в %) вольфрама примерно 10 -5 , рения 10 -7 , молибдена 3.10 -4 , ниобия 10 -3 , тантала 2.10 -4 и ванадия 1,5.10 -2 .

Тугоплавкие металлы являются переходными элементами и располагаются в IV, V, VI и VII группах (подгруппа А) периодической системы элементов. С увеличением атомного номера возрастает температура плавления тугоплавких металлов в каждой из подгрупп.

Элементы VA и VIA групп (ванадий, ниобий, тантал, хром, молибден и вольфрам) являются тугоплавкими металлами с объемно-центрированной кубической решеткой в отличие от других тугоплавких металлов, имеющих гранецентрированную и гексагональную плотно упакованную структуру.

Известно, что главным фактором, определяющим кристаллическую структуру и физические свойства металлов и сплавов, является природа их межатомных связей. Тугоплавкие металлы характеризуются высокой прочностью межатомной связи и, как следствие, высокой температурой плавления, повышенной механической прочностью и значительным электрическим сопротивлением.

Возможность исследования металлов методом электронной микроскопии позволяет изучать структурные особенности атомного масштаба, выявляет взаимосвязи между механическими свойствами и дислокациями, дефектами упаковки и др. Полученные данные показывают, что характерные физические свойства, отличающие тугоплавкие металлы от обычных, определяются электронной структурой их атомов. Электроны могут в различной степени переходить от одного атома к другому, при этом вид перехода отвечает определенному типу межатомной связи. Особенность электронного строения определяет высокий уровень межатомных сил (связей), высокую температуру плавления, прочность металлов и их взаимодействие с другими элементами и примесями внедрения. У вольфрама химически активная оболочка по энергетическому уровню включает электроны 5 d и 6 s.

Из тугоплавких металлов наибольшую плотность имеет вольфрам - 19,3 г/см 3 . Хотя при использовании в конструкциях ^большую плотность вольфрама можно рассматривать как отрицательный показатель, все же повышенная прочность при высоких температурах позволяет снизить массу изделий из вольфрама за счет уменьшения их размеров.

Плотность тугоплавких металлов в большой степени зависит от их состояния. Например, плотность спеченного штабика вольфрама колеблется в пределах 17,0-18,0 г/см 3 , а плотность кованого штабика со степенью деформации 75% составляет 18,6-19,2 г/см 3 . То же наблюдается и у молибдена: спеченный штабик имеет плотность 9,2-9,8 г/см 3 , кованый со степенью деформации 75% -9,7-10,2 г/см 3 и литой 10,2 г/см 3 .

Некоторые физические свойства вольфрама, тантала, молибдена и ниобия для сравнения приведены в табл. 1. Теплопроводность вольфрама составляет менее половины теплопроводности меди, но она намного выше, чем у железа или никеля.

Тугоплавкие металлы групп VA, VIA, VIIА периодической системы элементов по сравнению с другими элементами имеют меньший коэффициент линейного расширения. Наименьший коэффициент линейного расширения имеет вольфрам, что указывает на высокую стабильность его атомной решетки и является уникальным свойством этого металла.

Вольфрам имеет теплопроводность примерно в 3 раза меньшую, чем электропроводность отожженной меди, но она выше, чем у железа, платины и фосфоритной бронзы.

Для металлургии большое значение имеет плотность металла в жидком состоянии, так как эта характеристика определяет скорость движения по каналам, процесс удаления газообразных и неметаллических включений и влияет на образование усадочной раковины и пористости в слитках. У вольфрама эта величина выше, чем у других тугоплавких металлов. Однако другая физическая характеристика - поверхностное натяжение жидких тугоплавких металлов при температуре плавления - отличается меньше (см. табл. 1). Знание этой физической характеристики необходимо при таких процессах, как нанесение защитных покрытий, при пропитке, плавку и литье.

Важным литейным свойством металла является жидкотекучесть. Если для всех металлов эта величина определяется при заливке жидкого металла в спиральную форму при температуре заливки выше температуры плавления на 100-200° С, то жидкотекучесть вольфрама получена экстраполяцией эмпирической зависимости этой величины от теплоты плавления.

Вольфрам устойчив в различных газовых средах, кислотах и некоторых расплавленных металлах. При комнатной температуре вольфрам не взаимодействует с соляной, серной и фосфорной кислотами, не подвергается воздействию растворенной азотной кислоты и в меньшей степени, чем молибден, реагирует на смесь азотной и фтористоводородной кислот. Вольфрам обладает высокой коррозионной стойкостью в среде некоторых щелочей, например в среде гидроокиси натрия и калия, в которых проявляет стойкость до температуры 550° С. При действии расплавленного натрия он устойчив до 900° С, ртути - до 600°С, галлия до 800 и висмута до 980° С. Скорость коррозии в этих жидких металлах не превышает 0,025 мм/год. При температуре 400-490° С вольфрам начинает окисляться в среде воздуха и в кислороде. Слабая реакция происходит при нагреве до 100°С в соляной,азотной и плавиковой кислотах. В смеси плавиковой и азотной кислот идет быстрое растворение вольфрама. Взаимодействие с газовыми средами начинается при температурах (°С): с хлором 250, с фтором 20. В углекислом газе вольфрам окисляется при 1200° С, в аммиаке реакция не происходит.

Закономерность окисления тугоплавких металлов определяется в основном температурой. Вольфрам до 800-1000° С имеет параболическую закономерность окисления, а свыше 1000° С - линейную.

Высокая коррозионная стойкость в жидкометаллических средах (натрий, калий, литий, ртуть) позволяет применять вольфрам и его сплавы в энергетических установках.

Прочностные свойства вольфрама зависят от состояния материала и температуры. Для кованых прутков вольфрама предел прочности после рекристаллизации меняется в зависимости от температуры испытаний от 141 кгс/мм 2 при 20° С до 15,5 кгс/мм 2 при 1370° С. Полученный методом порошковой металлургии вольфрам при изменении температуры от 1370 до 2205° С имеет? b = 22,5?6,3 кгс/мм 2 . Прочность вольфрама особенно увеличивается в процессе холодной деформации. Проволока диаметром 0,025 мм имеет предел прочности 427 кгс/мм 2 .

Твердость деформированного технически чистого вольфрама HВ 488, отожженного НВ 286. При этом такая высокая твердость сохраняется вплоть до температур, близких к точке плавления, и в значительной степени зависит от чистоты металла.

Модуль упругости приближенно связан с атомным объемом температуры плавления

где T пл - абсолютная температура плавления; V aТ - атомный объем; К - константа.

Отличительной особенностью вольфрама среди металлов является также высокая объемная деформация, которая определяется из выражения

где Е - модуль упругости первого рода, кгс/мм 2 ; ?-коэффициент поперечной деформации.

Табл. 3 иллюстрирует изменение объемной деформации для стали, чугуна и вольфрама, рассчитанной по приведенному выше выражению.

Пластичность технически чистого вольфрама при 20 е С составляет менее 1 % и растет после зонной электронно-лучевой очистки от примесей, а также при легировании его добавкой 2% окиси тория. С увеличением температуры пластичность повышается.

Большая энергия межатомных связей металлов групп IV, V, VIA определяет их высокую прочность при комнатной и повышенных температурах. Механические свойства тугоплавких металлов существенно зависят от их чистоты, способов получения, механической и термической обработки, вида полуфабрикатов и других факторов. Большая часть сведений о механических свойствах тугоплавких металлов, опубликованных в литературе, получена на недостаточно чистых металлах, так как плавку в условиях вакуума начали применять сравнительно недавно.

На рис. 1 показана зависимость температуры плавления тугоплавких металлов от положения в периодической системе элементов.

Сравнение механических свойств вольфрама после дуговой плавки и вольфрама, полученного методом порошковой металлургии, показывает, что хотя их предел прочности отличается незначительно, однако более пластичным оказывается вольфрам дуговой плавки.

Твердость по Бринеллю вольфрама в виде спеченного штабика составляет НВ 200-250, а прокатанного нагартованного листа НВ 450-500, твердость молибдена равна соответственно НВ 150- 160 и НВ 240-250.

Легирование вольфрама проводят с целью повышения его пластичности, для этого используют прежде всего элементы замещения. Все больше внимания уделяют попыткам повысить пластичность металлов группы VIA добавками небольших количеств элементов групп VII и VIII. Повышение пластичности объясняют тем, что при легировании переходных металлов добавками в сплаве создается неоднородная электронная плотность вследствие локализации электронов легирующих элементов. При этом атом легирующего элемента изменяет силы межатомной связи в прилегающем объеме растворителя; протяженность такого объема должна зависеть от электронной структуры легирующего и легируемого металлов.

Трудность создания вольфрамовых сплавов состоит в том, что пока не удается при повышении прочности обеспечить необходимую пластичность. Механические свойства вольфрамовых сплавов, легированных молибденом, танталом, ниобием и окисью тория (при кратковременных испытаниях), приведены в табл. 4.

Легирование вольфрама молибденом позволяет получать сплавы, которые по своим прочностным свойствам превосходят нелегированный вольфрам вплоть до температур 2200° С (см. табл. 4). При повышении содержания тантала с 1,6 до 3,6% при температуре 1650°С прочность увеличивается в 2,5 раза. Это сопровождается уменьшением удлинения в 2 раза.

Разработаны и осваиваются дисперсионно упрочненные и сложнолегированные сплавы на основе вольфрама, которые содержат молибден, ниобий, гафний, цирконий, углерод. Например, следующие составы: W - 3% Mo - 1 % Nb; W - 3% Mo - 0,1% Hf; W - 3% Mo - 0,05% Zr; W - 0,07% Zr - 0,004% B; W - 25% Mo - 0,11 % Zr - 0,05% C.

Сплав W - 0,48% Zr-0,048% С имеет? b = 55,2 кгс/мм 2 при 1650° С и 43,8 кгс/мм 2 при 1925° С.

Высокие механические свойства имеют вольфрамовые сплавы, содержащие тысячные доли процента бора, десятые доли процента циркония, и гафния и около 1,5% ниобия. Прочность этих сплавов на разрыв при высоких температурах составляет 54,6 кгс/мм 2 при 1650° С, 23,8 кгс/мм 2 при 2200° С и 4,6 кгс/мм 2 при 2760° С. Однако температура перехода (около 500° С) таких сплавов из пластического состояния в хрупкое достаточно высока.

В литературе имеются сведения о сплавах вольфрама с 0,01 и 0,1% С, которые характеризуются пределом прочности, превышающим в 2-3 раза предел прочности рекристаллизованного вольфрама.

Рении существенно повышает жаропрочность сплавов вольфрама (табл. 5).


Очень давно и в широких масштабах применяется вольфрам и его сплавы в электротехнической и электровакуумной технике. Вольфрам и его сплавы являются основным материалом для изготовления нитей накаливания, электродов, катодов и других элементов конструкций мощных электровакуумных приборов. Высокая эмиссионная способность и светоотдача в накаленном состоянии, низкая упругость пара делают вольфрам одним из важнейших материалов для этой отрасли. В электровакуумных приборах для изготовления деталей, работающих при низких температурах, не проходящих предварительную обработку при Температуре выше 300° С, применяют чистый (без присадок) вольфрам.

Присадки различных элементов существенно изменяют свойства вольфрама. Это дает возможность создавать сплавы вольфрама с необходимыми характеристиками. Например, для деталей электровакуумных приборов, которые требуют применения непровисающего вольфрама при температурах до 2900° С и с высокой температурой первичной рекристаллизации, используют сплавы с кремнещелочными или алюминиевыми присадками. Кремнещелочные и ториевые присадки повышают темпера-туру рекристаллизации и увеличивают прочность вольфрама при высоких температурах, что позволяет изготовлять детали, работающие при температуре до 2100° С в условиях повышенных механических нагрузок.

Катоды электронных и газоразрядных приборов, крючки и пружины генераторных ламп с целью повышения эмиссионных свойств изготовляют из вольфрама с присадкой окиси тория (например, марок ВТ-7, ВТ-10, ВТ-15, с содержанием окиси тория соответственно 7, 10 и 15%).

Высокотемпературные термопары изготовляют из сплавов вольфрама с рением. Вольфрам без присадок, в котором допускается повышенное содержание примесей, применяют при изготовлении холодных деталей электровакуумных приборов (вводы в стекло, траверсы). Электроды импульсных ламп и холодные катоды газоразрядных ламп рекомендуется делать из сплава вольфрама с никелем и барием.

Для работы при температурах выше 1700° С следует применять сплавы ВВ-2 (вольфрамониобиевые). Интересно отметить, что при кратковременных испытаниях сплавы с содержанием ниобия от 0,5 до 2% имеют предел прочности при 1650°С в 2-2,5 раза выше нелегированного вольфрама. Наиболее прочным является сплав вольфрама с 15% молибдена. Сплавы W-Re-Th O 2 обладают хорошей обрабатываемостью по сравнению со сплавами W - Re; добавление двуокиси тория делает возможной такую обработку, как точение, фрезерование, сверление.

Легирование вольфрама рением повышает его пластичность, прочностные же свойства с ростом температуры становятся примерно одинаковыми. Добавки в сплавы вольфрама мелкодисперсных окислов повышают их пластичность. Кроме того, эти добавки значительно улучшают обрабатываемость резанием.

Сплавы вольфрама с рением (W - 3% Re; W - 5% Re; W - 25% Re) применяют для измерения и контроля температуры до 2480° С при производстве стали и в других видах техники. Увеличивается применение сплавов вольфрама с рением при изготовлении антикатодов в рентгеновских трубках. Молибденовые антикатоды, покрытые этим сплавом, работают под большой нагрузкой и имеют более длительный срок службы.

Высокая чувствительность вольфрамовых электродов к изменению концентрации водородных ионов позволяет применять их для потенциометрического титрования. Такие электроды используют для контроля воды и различных растворов. Они просты по конструкции и имеют малую величину электрического сопротивления, что делает перспективным их применение в качестве микроэлектродов при исследовании кислотостойкости приэлектродного слоя в электрохимических процессах.

Недостатками вольфрама являются его низкая пластичность (?<1%), большая плотность, высокое поперечное сечение захвата тепловых нейтронов, плохая свариваемость, низкая ока-линостойкость и плохая обрабатываемость резанием. Однако легирование его различными элементами позволяет улучшить эти характеристики.

Ряд деталей для электротехнической промышленности и сопловые вкладыши двигателей изготовляют из вольфрама, пропитанного медью или серебром. Взаимодействие тугоплавкой твердой фазы (вольфрама) с пропитывающим металлом (медью или серебром) такое, что взаимная растворимость металлов практически отсутствует. Краевые углы смачивания вольфрама жидкой медью и серебром достаточно малы по причине большой поверхностной энергии вольфрама, и этот факт улучшает проникновение серебра или меди. Вольфрам, пропитанный серебром или медью, производили первоначально двумя методами: полным погружением заготовки из вольфрама в расплавленный металл или частичным погружением подвешенной заготовки из вольфрама. Есть также методы пропитки с использованием гидростатического давления жидкости или вакуумного всасывания.

Изготовление из вольфрама электротехнических контактов, пропитанных серебром или медью, осуществляют следующим образом. Сначала производят прессование порошка вольфрама и его спекание при определенных технологических режимах. Затем полученную заготовку пропитывают. В зависимости от полученной пористости заготовки меняется доля пропитывающего вещества. Так, содержание меди в вольфраме может меняться от 30 до 13% при изменении удельного давления прессования от 2 до 20 тс/см 2 . Технология получения пропитанных материалов довольно проста, экономична, и качество таких контактов выше, так как один из компонентов дает материалу высокую твердость, эрозионную стойкость, большую температуру плавления, а другой повышает электропроводность.

Хорошие результаты получают при применении пропитанного вольфрама медью или серебром для изготовления сопловых вкладышей твердотопливных двигателей. Повышение таких свойств пропитанного вольфрама, как теплопроводность и электропроводность, коэффициента термического расширения, значительно увеличивает долговечность двигателя. Кроме того, испарение пропитывающего металла из вольфрама во время работы двигателя имеет положительное значение, снижая тепловые потоки и уменьшая эрозионное воздействие продуктов сгорания.

Порошок вольфрама применяют при изготовлении пористых материалов для деталей электростатического ионного двигателя. Применение вольфрама для этих целей позволяет улучшить его основные характеристики.

Теплоэрозионные свойства сопел, изготовленных из вольфрама, упрочненного дисперсными окислами ZrO2, MgO2, V2O3, НfO 2 , повышаются по сравнению с соплами из спеченного вольфрама. После соответствующей подготовки на поверхность вольфрама для снижения высокотемпературной коррозии наносят гальванические покрытия, например покрытие никелем, которое выполняют в электролите, содержащем 300 г/л сернокислого натрия, 37,5 г/л борной кислоты при плотности тока 0,5-11 А/дм 2 , температуре 65° С и рН = 4.