Химия и химическое образование. Образование химических элементов и веществ

Химический элемент – совокупность атомов с одинаковым зарядом. Как же образуются простые и сложные химические элементы?

Химический элемент

Все многообразие окружающей нас природы состоит из сочетаний сравнительно небольшого числа химических элементов.

В различные исторические эпохи в понятие «элемент» вкладывался различный смысл. Древнегреческие философы в качестве «элементов» рассматривали четыре «стихии» – тепло, холод, сухость и влажность. Сочетаясь попарно, они образовывали четыре «начала» всех вещей – огонь, воздух, воду и землю. В середине века к этим началам добавились соль, сера и ртуть. В XVIII веке Р. Бойль указал на то, что все элементы носят материальный характер и их число может быть достаточно велико.

В 1787 году французский химик А. Лавуазье создал «Таблицу простых тел». В нее вошли все известные к тому времени элементы. Под последними понимались простые тела, которые не удавалось разложить химическими методами на еще более простые. Впоследствии выяснилось, что в таблицу вошли и некоторые сложные вещества.

Рис. 1. А. Лавуазье.

В настоящее время понятие «химический элемент» установлено точно. Химический элемент – это вид атомов с одинаковым положительным зарядом ядра. Последний равен порядковому номеру элемента в таблице Менделеева.

В настоящее время известно 118 элементов. Примерно 90 из них существуют в природе. Остальные получены искусственно с помощью ядерных реакций.

104-107 элементы были синтезированы учеными-физиками. В настоящее время продолжаются исследования по искусственному получению химических элементов с более высокими порядковыми номерами.

Все элементы делятся на металлы и неметаллы. К неметаллам относятся такие элементы, как: гелий, неон, аргон, криптон, фтор, хлор, бром, йод, астат, кислород, сера, селен, азот, телур, фосфор, мышьяк, кремний, бор, водород. Однако деление на металлы и неметаллы условное. При определенных условиях некоторые металлы могут приобретать неметаллические свойства, а некоторые неметаллы – металлические.

Образование химических элементов и веществ

Химические элементы могут существовать в виде одиночных атомов, в виде одиночных свободных ионов, но обычно входят в состав простых и сложных веществ.

Рис. 2. Схемы образования химических элементов.

Простые вещества состоят из атомов одного вида и образуются в результате соединения атомов в молекулы и кристаллы. Большинство химических элементов относятся к металлическим, потому что образованные ими простые вещества является металлами. Металлы имеют общие физические свойства: все они твердые (кроме ртути), непрозрачные, имеют металлический блеск, тепло- и электропроводность, ковкость. Металлы образуют такие химические элементы, как, например, магний, кальций, железо, медь.

Неметаллические элементы образуют простые вещества, относящиеся к неметаллам. Они не имеют характерных металлических свойств, бывают газами (кислород, азот), жидкостями (бром), и твердыми веществами (сера, йод).

Один и тот же элемент может образовывать несколько разных простых веществ, обладающих разными физическими и химическими свойствами. Они называются аллотропными формами, а явление их существования называется аллотропией. Примерами могут быть алмаз, графит и карбин – простые вещества, являющиеся аллотропными формами элемента углерода.

Рис. 3. Алмаз, графит, карбин.

Сложные вещества состоят из атомов элементов разного вида. Например, сульфид железа состоит из атомов химического элемента железа и химического элемента серы. При этом сложное вещество ни в коей мере не сохраняет свойств простых веществ железа и серы: их там нет, а есть атомы соответствующих элементов.

Что мы узнали?

В настоящее время известно 118 химических элементов, которые подразделяются на металлы и неметаллы. Все элементы можно разделить на простые и сложные вещества. первые состоят из атомов одного вида, а вторые – из атомов разных видов.

Тест по теме

Оценка доклада

Средняя оценка: 4.3 . Всего получено оценок: 296.

Адрес: Санкт-Петербург, наб. р. Мойки, д.48

Е-мейл Оргкомитета: [email protected]

Организаторы: РГПУ им. А.И. Герцена

Условия участия и жилье: 400 руб.

Уважаемые коллеги!

Приглашаем Вас принять участие во II Всероссийской студенческой конференции с международным участием «Химия и химическое образование XXI века», посвященной 50-летию факультета химии РГПУ им. А.И. Герцена и 100-летию со дня рождения профессора В.В. Перекалина.

Конференция состоится на базе РГПУ им. А.И. Герцена.

Сроки проведения конференции – с 15 по 17 апреля 2013 гЦель конференции – обмен результатами изучения современных проблем химии и химического образования между молодыми исследователями и активное приобщение студентов к научно-исследовательской работе. В рамках конференции будут представлены секционные (до 10 мин) и стендовые доклады студентов , обучающихся в бакалавриате, сп ециалитете и магистратуре. Возможно заочное участие с публикацией тезисов доклада.Отобранные Оргкомитетом тезисы докладов будут опубликованы в сборнике материалов конференции с присвоением номера ISBN . С пленарными докладами выступят приглашенные ведущие химики Санкт-Петербурга.

Основные научные направления конференции:

  • Секция 1 – органическая, биологическая и фармацевтическая химия
  • Секция 2 – физическая, аналитическая и экологическая химия
  • Секция 3 – неорганическая и координационная химия, нанотехнологии
  • Секция 4 – химическое образование

Для участия в конференции необходимо:

До 15 февраля 2013 г. выслать регистрационную форму участника и тезисы доклада, оформленные в соответствии с требованиями, на электронный адрес конференции: conference -2013@yandex .ru

Хими ческое и хи мико-технологи ческое образова ние, система овладения в учебных заведениях знаниями по химии и химической технологии , способами применения их к решению инженерно-технологических и исследовательских задач. Подразделяется на общее химическое образование , обеспечивающее овладение знаниями основ химической науки, и специальное химическое и , вооружающее знаниями химии и химической технологии , необходимыми специалистам высшей и средней квалификации для производственной деятельности, научно-исследовательской и преподавательской работы как в области химии , так и в связанных с ней отраслях науки и техники. Общее химическое образование даётся в средней общеобразовательной школе, средних профессионально-технических и средних специальных учебных заведениях. Специальное химическое и химико-технологическое образование приобретается в различных высших и средних специальных учебных заведениях (университетах, институтах, техникумах, училищах). Его задачи, объём и содержание зависят от профиля подготовки в них специалистов (химическая, горная, пищевая, фармацевтическая, металлургическая промышленность, сельское хозяйство, медицина, теплоэнергетика и т.д.). Содержание химического и изменяется в зависимости от развития химии и требований производства.

Совершенствование структуры и содержания химического и химико-технологического образования связано с научной и педагогической деятельностью многих советских учёных - А.. Е. Арбузова, Б. А. Арбузова, А. Н. Баха, С. И. Вольфковича, Н. Д. Зелинского, И. А. Каблукова, В. А. Каргина, И. Л. Кнунянца, Д. П. Коновалова, С. В. Лебедева, С. С. Наметкина, Б. В. Некрасова, А. Н. Несмеянова, А. Е. Порай-Кошица, А. Н. Реформатского, С. Н. Реформатского, Н. Н. Семенова, Я. К. Сыркина, В. Е. Тищенко, А. Е. Фаворского и др. Новые достижения химически наук освещаются в специальных химических журналах , помогающих в совершенствовании научного уровня курсов химии и химической технологии в высшей школе. Для учителей издаётся журнал «Химия в школе».

В других социалистических странах подготовка специалистов с химическим и химико-технологическим образованием осуществляется в университетах и специализированных вузах. Крупными центрами такого образования являются: в НРБ - Софийский университет, Софийский ; в ВНР - Будапештский университет, Веспремский ; в ГДР - Берлинский, Дрезденский технический, Ростокский университеты, Магдебургская высшая техническая школа; в ПНР - Варшавский, Лодзинский, Люблинский университеты, Варшавский политехнический институт; в СРР - Бухарестский, Клужский университеты, Бухарестский, Ясский политехнический институты; в ЧССР - Пражский университет, Пражский , Пардубицкая высшая химико-технологическая школа; в СФРЮ - Загребский, Сараевский, Сплитский университеты и др.

В капиталистических странах крупными центрами химического и химико-технологического образования являются: в Великобритании - Кембриджский, Оксфордский, Батский, Бирмингемский университеты, Манчестерский политехнический институт; в Италии - Болонский, Миланский университеты; в США - Калифорнийский, Колумбийский, Мичиганский технологические университеты, Толедский университет, Калифорнийский, Массачусетсский технологические институты; во Франции - Гренобльский 1-й, Марсельский 1-й, Клермон-Ферранский, Компьенский технологический, Лионский 1-й, Монпельеский 2-й, Парижские 6-й и 7-й университеты, Лоранский, Тулузский политехнические институты; в ФРГ - Дортмундский, Ганноверский, Штутгартский университеты, Высшие технические школы в Дармштадте и Карлсруэ; в Японии - Киотский, Окаямский, Осакский, Токийский университеты и др.

Лит.: Фигуровский Н. А., Быков Г. В., Комарова Т. А., Химия в Московском университете за 200 лет, М., 1955; История химических наук, М., 1958; Ременников Б. М., Ушаков Г. И., Университетское образование в СССР, М., 1960; Зиновьев С. И., Ременников Б. М., Высшие учебные заведения СССР, [М.], 1962; Парменов К. Я., Химия как учебный предмет в дореволюционной и советской школе, М., 1963; Преподавание химии по новой программе в средней школе. [Сб. ст.], М., 1974; Джуа М., История химии , пер. с итал., М., 1975.

Выступление на втором
Московском педагогическом марафоне
учебных предметов, 9 апреля 2003 г.

Естественные науки во всем мире переживают нелегкие времена. Финансовые потоки уходят из науки и образования в военно-политическую сферу, престиж научных работников и преподавателей падает, а необразованность большей части общества стремительно растет. Миром правит невежество. Дело доходит до того, что в Америке правые христиане требуют юридической отмены второго закона термодинамики, который, по их мнению, противоречит религиозным доктринам.
Больше других естественных наук страдает химия. У большинства людей эта наука ассоциируется с химическим оружием, загрязнением окружающей среды, техногенными катастрофами, производством наркотиков и т. д. Преодоление «хемофобии» и массовой химической безграмотности, создание привлекательного общественного образа химии – одна из задач химического образования, современное состояние которого в России мы хотим обсудить.

Программа модернизации (реформы)
образования в России и ее недостатки

В Советском Союзе существовала отлаженная система химического образования, основанная на линейном подходе, когда изучение химии начиналось в средних классах и заканчивалось в старших. Была разработана согласованная схема обеспечения учебного процесса, в том числе: программы и учебники, подготовка и повышение квалификации учителей, система химических олимпиад всех уровней, комплекты учебных пособий («Библиотека школы», «Библиотека учителя» и
т. д.), общедоступные методические журналы («Химия в школе» и т. д.), демонстрационные и лабораторные приборы.
Образование – консервативная и инертная система, поэтому даже после распада СССР химическое образование, которое понесло тяжелые финансовые потери, продолжало выполнять свои задачи. Однако несколько лет назад в России началась реформа системы образования, главная цель которой – поддержка вхождения новых поколений в глобализованный мир, в открытое информационное сообщество. Для этого, по мнению авторов реформы, центральное место в содержании образования должны занимать коммуникативность, информатика, иностранные языки, межкультурное обучение. Как видим, для естественных наук места в этой реформе не предусмотрено.
Объявлено, что новая реформа должна обеспечить переход на сопоставимую с мировой систему показателей качества и стандартов образования. Разработан и план конкретных мероприятий, среди которых главные – переход на 12-летнее школьное обучение, введение единого государственного экзамена (ЕГЭ) в форме всеобщего тестирования, разработка новых стандартов образования на основе концентрической схемы, согласно которой к моменту окончания девятилетки ученики должны иметь целостное представление о предмете.
Как повлияет эта реформа на химическое образование в России? На наш взгляд, резко отрицательно. Дело в том, что среди разработчиков Концепции модернизации российского образования не было ни одного представителя естествознания, поэтому интересы естественных наук в этой концепции совершенно не учтены. ЕГЭ в той форме, в какой его задумали авторы реформы, испортит систему перехода от средней школы к высшей, которую вузы с таким трудом сформировали в первые годы независимости России, и разрушит преемственность российского образования.
Один из аргументов в пользу ЕГЭ состоит в том, что он, по мнению идеологов реформы, обеспечит равный доступ к высшему образованию для различных социальных слоев и территориальных групп населения.

Наш многолетний опыт дистанционного обучения, связанный с проведением Соросовской олимпиады по химии и заочно-очной формой приема на химический факультет МГУ, показывает, что дистанционное тестирование, во-первых, не дает объективной оценки знаний, а во-вторых, не обеспечивает школьникам равных возможностей. За 5 лет Соросовских олимпиад через наш факультет прошло больше 100 тыс. письменных работ по химии, и мы убедились в том, что общий уровень решений очень сильно зависит от региона; кроме того, чем ниже был образовательный уровень региона, тем больше оттуда присылали списанных работ. Еще одно существенное возражение против ЕГЭ состоит в том, что тестирование как форма проверки знаний имеет существенные ограничения. Даже корректно составленный тест не позволяет объективно оценить умение школьника рассуждать и делать выводы. Наши студенты изучили материалы ЕГЭ по химии и обнаружили большое число некорректных или неоднозначных вопросов, которые нельзя применять для тестирования школьников. Мы пришли к выводу, что ЕГЭ можно использовать только как одну из форм контроля работы средних школ, но ни в коем случае не как единственный, монопольный механизм доступа к высшему образованию.
Другой отрицательный аспект реформы связан с разработкой новых стандартов образования, которые должны приблизить российскую систему образования к европейской. В проекте стандартов, предложенном в 2002 г. Министерством образования, был нарушен один из главных принципов естественно-научного образования – предметность . Руководители рабочей группы, которые составляли проект, предлагали подумать о том, чтобы отказаться от отдельных школьных курсов химии, физики и биологии и заменить их единым интегрированным курсом «Естествознание». Такое решение, пусть даже принятое на долгосрочную перспективу, просто похоронило бы химическое образование в нашей стране.
Что же в этих неблагоприятных внутриполитических условиях можно сделать для сохранения традиций и развития химического образования в России? Теперь мы переходим к нашей позитивной программе, многое из которой уже удалось реализовать. Эта программа имеет два основных аспекта – содержательный и организационный: мы стараемся определять содержание химического образования в нашей стране и развивать новые формы взаимодействия центров химического образования.

Новый государственный стандарт
химического образования

Химическое образование начинается со школы. Содержание школьного образования определяется главным нормативным документом – государственным стандартом школьного образования. В рамках принятой у нас концентрической схемы существуют три стандарта по химии: основное общее образование (8–9-е классы), базовое среднее и профильное среднее образование (10–11-е классы). Один из нас (Н.Е.Кузьменко) возглавил рабочую группу Министерства образования по подготовке стандартов, и к настоящему времени эти стандарты полностью сформулированы и готовы к законодательному утверждению.
Принимаясь за разработку стандарта химического образования, авторы исходили из тенденций развития современной химии и учитывали ее роль в естествознании и в обществе. Современная химия это фундаментальная система знаний об окружающем мире, основанная на богатом экспериментальном материале и надежных теоретических положениях . Научное содержание стандарта базируется на двух основных понятиях: «вещество» и «химическая реакция».
«Вещество» – главное понятие химии. Вещества окружают нас везде: в воздухе, пище, почве, бытовой технике, растениях и, наконец, в нас самих. Часть из этих веществ нам дана природой в готовом виде (кислород, вода, белки, углеводы, нефть, золото), другую часть человек получил путем небольшой модификации природных соединений (асфальт или искусственные волокна), но самое большое число веществ, которые раньше в природе не существовали, человек синтезировал самостоятельно. Это – современные материалы, лекарства, катализаторы. На сегодняшний день известно около 20 млн органических и около 500 тыс. неорганических веществ, и каждое из них обладает внутренней структурой. Органический и неорганический синтез достиг такой высокой степени развития, что позволяет синтезировать соединения с любой заранее заданной структурой. В связи с этим на первый план в современной химии выходит
прикладной аспект , в котором упор делается на связи структуры вещества с его свойствами , а основная задача состоит в поиске и синтезе полезных веществ и материалов, обладающих заданными свойствами.
Самое интересное в окружающем мире состоит в том, что он постоянно изменяется. Второе главное понятие химии – это «химическая реакция». Каждую секунду в мире происходит неисчислимое множество реакций, в результате которых одни вещества превращаются в другие. Некоторые реакции мы можем наблюдать непосредственно, например ржавление железных предметов, свертывание крови, сгорание автомобильного топлива. В то же время подавляющее большинство реакций остаются невидимыми, но именно они определяют свойства окружающего нас мира. Для того чтобы осознать свое место в мире и научиться им управлять, человек должен глубоко понять природу этих реакций и те законы, которым они подчиняются.
Задача современной химии состоит в изучении функций веществ в сложных химических и биологических системах, анализе связи структуры вещества с его функциями и синтезе веществ с заданными функциями.
Исходя из того, что стандарт должен служить инструментом развития образования, было предложено разгрузить содержание основного общего образования и оставить в нем только те элементы содержания, образовательная ценность которых подтверждена отечественной и мировой практикой преподавания химии в школе. Это минимальная по объему, но функционально полная система знаний.
Стандарт основного общего образования включает шесть содержательных блоков:

  • Методы познания веществ и химических явлений.
  • Вещество.
  • Химическая реакция.
  • Элементарные основы неорганической химии.
  • Первоначальные представления об органических веществах.
  • Химия и жизнь.

Стандарт базового среднего образования разбит на пять содержательных блоков:

  • Методы познания химии.
  • Теоретические основы химии.
  • Неорганическая химия.
  • Органическая химия.
  • Химия и жизнь.

Основу обоих стандартов составляют периодический закон Д.И.Менделеева, теория строения атомов и химической связи, теория электролитической диссоциации и структурная теория органических соединений.
Стандарт базового среднего уровня призван обеспечить выпускнику средней школы прежде всего возможность ориентироваться в общественных и личных проблемах, связанных с химией.
В стандарте профильного уровня система знаний значительно расширена в первую очередь за счет представлений о строении атомов и молекул, а также о закономерностях протекания химических реакций, рассматриваемых с точки зрения теорий химической кинетики и химической термодинамики. Тем самым обеспечивается подготовка выпускников средней школы к продолжению химического образования в высшей школе.

Новая программа и новые
учебники по химии

Новый, научно обоснованный стандарт химического образования подготовил благоприятную почву для разработки новой школьной программы и создания комплекта школьных учебников на ее основе. В этом докладе мы представляем школьную программу по химии для 8–9-го классов и концепцию серии учебников для 8–11-го классов, созданных авторским коллективом химического факультета МГУ.
Программа курса химии основной общеобразовательной школы рассчитана на учащихся 8–9-го классов. От типовых программ, действующих в настоящее время в средних школах России, ее отличают более выверенные междисциплинарные связи и точный отбор материала, необходимого для создания целостного естественно-научного восприятия мира, комфортного и безопасного взаимодействия с окружающей средой в условиях производства и в быту. Программа построена таким образом, что в ней главное внимание уделяется тем разделам химии, терминам и понятиям, которые так или иначе связаны с повседневной жизнью, а не являются «кабинетным знанием» узко ограниченного круга лиц, чья деятельность связана с химической наукой.
В течение первого года обучения химии (8-й класс) основное внимание уделяется формированию у учащихся элементарных химических навыков, «химического языка» и химического мышления. Для этого выбраны объекты, знакомые из повседневной жизни (кислород, воздух, вода). В 8-м классе мы сознательно избегаем сложного для восприятия школьников понятия «моль», практически не используем расчетные задачи. Основная идея этой части курса – привить ученикам навыки описания свойств различных веществ, сгруппированных по классам, а также показать связь между строением веществ и их свойствами.
На втором году обучения (9-й класс) введение дополнительных химических понятий сопровождается рассмотрением строения и свойств неорганических веществ. В специальном разделе кратко рассматриваются элементы органической химии и биохимии в объеме, предусмотренном государственным стандартом образования.

Для развития химического взгляда на мир в курсе проводятся широкие корреляции между полученными ребятами в классе элементарными химическими знаниями и свойствами тех объектов, которые известны школьникам в повседневной жизни, но до этого ими воспринимались лишь на бытовом уровне. На основе химических представлений учащимся предлагается взглянуть на драгоценные и отделочные камни, стекло, фаянс, фарфор, краски, продукты питания, современные материалы. В программе расширен круг объектов, которые описываются и обсуждаются лишь на качественном уровне, не прибегая к громоздким химическим уравнениям и сложным формулам. Мы обращали большое внимание на стиль изложения, который позволяет вводить и обсуждать химические понятия и термины в живой и наглядной форме. В этой связи постоянно подчеркиваются междисциплинарные связи химии с другими науками, не только естественными, но и гуманитарными.
Новая программа реализована в комплекте школьных учебников для 8–9-х классов, один из которых уже сдан в печать, а другой находится в стадии написания. При создании учебников мы учитывали изменение социальной роли химии и общественного интереса к ней, которое вызвано двумя основными взаимосвязанными факторами. Первое – это «хемофобия» , т. е. отрицательное отношение общества к химии и ее проявлениям. В этой связи важно на всех уровнях объяснять, что плохое – не в химии, а в людях, которые не понимают законов природы или имеют нравственные проблемы.
Химия – очень мощный инструмент в руках человека, в ее законах нет понятий добра и зла. Пользуясь одними и теми же законами, можно придумать новую технологию синтеза наркотиков или ядов, а можно – новое лекарство или новый строительный материал.
Другой социальный фактор – это прогрессирующая химическая безграмотность общества на всех его уровнях – от политиков и журналистов до домохозяек. Большинство людей совершенно не представляет, из чего состоит окружающий мир, не знает элементарных свойств даже простейших веществ и не может отличить азот от аммиака, а этиловый спирт от метилового. Именно в этой области грамотный учебник по химии, написанный простым и понятным языком, может сыграть большую просветительскую роль.
При создании учебников мы исходили из следующих постулатов.

Основные задачи школьного курса химии

1. Формирование научной картины окружающего мира и развитие естественно-научного мировоззрения. Представление химии как центральной науки, направленной на решение насущных проблем человечества.
2. Развитие химического мышления, умения анализировать явления окружающего мира в химических терминах, способности говорить (и думать) на химическом языке.
3. Популяризация химических знаний и внедрение представлений о роли химии в повседневной жизни и ее прикладном значении в жизни общества. Развитие экологического мышления и знакомство с современными химическими технологиями.
4. Формирование практических навыков безопасного обращения с веществами в повседневной жизни.
5. Пробуждение живого интереса у школьников к изучению химии как в рамках школьной программы, так и дополнительно.

Основные идеи школьного курса химии

1. Химия – центральная наука о природе, тесно взаимодействующая с другими естественными науками. Основное значение для жизни общества имеют прикладные возможности химии.
2. Окружающий мир состоит из веществ, которые характеризуются определенной структурой и способны к взаимным превращениям. Существует связь между структурой и свойствами веществ. Задача химии состоит в создании веществ с полезными свойствами.
3. Окружающий мир постоянно изменяется. Его свойства определяются химическими реакциями, которые в нем протекают. Для того чтобы управлять этими реакциями, необходимо глубоко понимать законы химии.
4. Химия – мощный инструмент для преобразования природы и общества. Безопасное применение химии возможно только в высокоразвитом обществе с устойчивыми нравственными категориями.

Методические принципы и стиль учебников

1. Последовательность изложения материала ориентирована на изучение химических свойств окружающего мира с постепенным и деликатным (т. е. ненавязчивым) знакомством с теоретическими основами современной химии. Описательные разделы чередуются с теоретическими. Материал равномерно распределен по всему периоду обучения.
2. Внутренняя замкнутость, самодостаточность и логическая обоснованность изложения. Любой материал преподносится в контексте общих проблем развития науки и общества.
3. Постоянная демонстрация связи химии с жизнью, частое напоминание о прикладном значении химии, научно-популярный анализ веществ и материалов, с которыми учащиеся сталкиваются в повседневной жизни.
4. Высокий научный уровень и строгость изложения. Химические свойства веществ и химические реакции описываются так, как они идут на самом деле. Химия в учебниках – реальная, а не «бумажная».
5. Дружелюбный, легкий и беспристрастный стиль изложения. Простой, доступный и грамотный русский язык. Использование «сюжетов» – коротких, занимательных рассказов, связывающих химические знания с повседневной жизнью, – для облегчения восприятия. Широкое использование иллюстраций, которые составляют около 15% объема учебников.
6. Двухуровневая структура представления материала. «Крупный шрифт» – это базовый уровень, «мелкий шрифт» предназначен для более глубокого изучения.
7. Широкое использование простых и наглядных демонстрационных опытов, лабораторных и практических работ для изучения экспериментальных аспектов химии и развития практических навыков учащихся.
8. Использование вопросов и задач двух уровней сложности для более глубокого усвоения и закрепления материала.

В комплект учебных пособий мы предполагаем включить:

  • учебники по химии для 8–11-го классов;
  • методические указания для учителей, тематическое планирование уроков;
  • дидактические материалы;
  • книгу для чтения учащимися;
  • справочные таблицы по химии;
  • компьютерную поддержку в виде компакт-дисков, содержащих: а) электронный вариант учебника; б) справочные материалы; в) демонстрационные опыты; г) иллюстративный материал; д) анимационные модели; е) программы для решения расчетных задач; ж) дидактические материалы.

Мы надеемся, что новые учебники позволят многим школьникам по-новому взглянуть на наш предмет и покажут им, что химия – увлекательная и очень полезная наука.
В развитии интереса школьников к химии кроме учебников большую роль играют химические олимпиады.

Современная система химических олимпиад

Система химических олимпиад – одна из немногих образовательных структур, которые выдержали распад страны. Всесоюзная олимпиада по химии трансформировалась во Всероссийскую, сохранив ее основные черты. В настоящее время эта олимпиада проходит в пять этапов: школьный, районный, областной, федеральный окружной и финальный. Победители финального этапа представляют Россию на Международной химической олимпиаде. Самыми важными с точки зрения образования являются наиболее массовые этапы – школьный и районный, за который отвечают школьные учителя и методические объединения городов и районов России. За всю олимпиаду в целом отвечает Министерство образования.
Интересно, что бывшая Всесоюзная олимпиада по химии тоже сохранилась, но в новом качестве. Ежегодно химический факультет МГУ организует международную Менделеевскую олимпиаду , в которой участвуют победители и призеры химических олимпиад стран СНГ и Балтии. В прошлом году эта олимпиада с большим успехом прошла в Алма-Ате, в этом году – в г. Пущино Московской области. Менделеевская олимпиада позволяет талантливым детям из бывших республик Советского Союза поступить в МГУ и другие престижные вузы без экзаменов. Необычайно ценно также общение преподавателей химии во время олимпиады, которое способствует сохранению единого химического пространства на территории бывшего Союза.
В последние пять лет число предметных олимпиад резко возросло за счет того, что многие вузы в поисках новых форм привлечения абитуриентов стали проводить собственные олимпиады и засчитывать результаты этих олимпиад в качестве вступительных экзаменов. Одним из пионеров этого движения был химический факультет МГУ, который ежегодно проводит заочно-очную олимпиаду по химии, физике и математике. Этой олимпиаде, которую мы назвали «Абитуриент МГУ», в этом году исполняется уже 10 лет. Она обеспечивает равный доступ всем группам школьников к обучению в МГУ. Олимпиада проходит в два этапа: заочный и очный. первый – заочный – этап имеет ознакомительный характер. Мы публикуем задания во всех профильных газетах и журналах и рассылаем задания по школам. На решение отводится почти полгода. Тех, кто выполнил хотя бы половину заданий, мы приглашаем на второй этап – очный тур, который проходит в 20-х числах мая. Письменные задания по математике и химии позволяют определить победителей олимпиады, которые получают преимущества при поступлении на наш факультет.
География этой олимпиады необычайно широка. Каждый год в ней участвуют представители всех регионов России – от Калининграда до Владивостока, а также несколько десятков «иностранцев» из стран СНГ. Развитие этой олимпиады привело к тому, что почти все талантливые дети из провинции едут учиться к нам: более 60% студентов химического факультета МГУ – иногородние.
В то же время вузовские олимпиады постоянно испытывают давление со стороны Министерства образования, которое проводит идеологию ЕГЭ и стремится лишить вузы самостоятельности в определении форм приема абитуриентов. И здесь на помощь министерству приходит, как это ни странно, Всероссийская олимпиада. Идея министерства состоит в том, что преимущества при поступлении в вузы должны иметь только участники тех олимпиад, которые организационно вливаются в структуру Всероссийской олимпиады. Любой вуз может самостоятельно проводить какую угодно олимпиаду безо всякой связи с Всероссийской, но результаты такой олимпиады не будут засчитываться при поступлении в этот вуз.
Если такая идея будет законодательно оформлена, это нанесет довольно сильный удар по системе приема в вузы и, самое главное, по школьникам выпускных классов, которые лишатся многих стимулов к поступлению в выбранный ими вуз.
Однако в этом году прием в вузы будет проходить по прежним правилам, и в связи с этим мы хотим рассказать о вступительном экзамене по химии в МГУ.

Вступительный экзамен по химии в МГУ

Вступительный экзамен по химии в МГУ сдают на шести факультетах: химическом, биологическом, медицинском, почвенном, факультете наук о материалах и новом факультете биоинженерии и биоинформатики. Экзамен – письменный, рассчитан на 4 часа. За это время школьники должны решить 10 задач разного уровня сложности: от тривиальных, т. е. «утешительных», до довольно сложных, которые позволяют дифференцировать оценки.
Ни одна из задач не требует специальных знаний, выходящих за рамки того, что изучают в профильных химических школах. Тем не менее большинство задач строится так, что для их решения требуются размышления, основанные не на запоминании, а на владении теорией. В качестве примера мы хотим привести несколько таких задач из разных разделов химии.

Теоретическая химия

Задача 1 (биологический факультет). Константа скорости реакции изомеризации A B равна 20 с –1 , а константа скорости обратной реакции B A равна 12 с –1 . Рассчитайте состав равновесной смеси (в граммах), полученной из 10 г вещества A.

Решение
Пусть в B превратилось x г вещества A, тогда в равновесной смеси содержится (10 – x ) г A и x г B. При равновесии скорость прямой реакции равна скорости обратной реакции:

20 (10 – x ) = 12x ,

откуда x = 6,25.
Состав равновесной смеси: 3,75 г A, 6,25 г B.
Ответ . 3,75 г A, 6,25 г B.

Неорганическая химия

Задача 2 (биологический факультет). Какой объем углекислого газа (н. у.) надо пропустить через 200 г 0,74%-го раствора гидроксида кальция, чтобы масса выпавшего осадка составила 1,5 г, а раствор над осадком не давал окраски с фенолфталеином?

Решение
При пропускании углекислого газа через раствор гидроксида кальция сначала образуется осадок карбоната кальция:

который затем может растворяться в избытке CO 2:

CaCO 3 + CO 2 + H 2 O = Ca(HCO 3) 2 .

Зависимость массы осадка от количества вещества CO 2 имеет следующий вид:

При недостатке CO 2 раствор над осадком будет содержать Ca(OH) 2 и давать фиолетовое окрашивание с фенолфталеином. По условию этого окрашивания нет, следовательно, CO 2 находится в избытке
по сравнению с Ca(OH) 2 , т. е. сначала весь Ca(OH) 2 превращается в CaCO 3 , а затем CaCO 3 частично растворяется в CO 2 .

(Ca(OH) 2) = 200 0,0074/74 = 0,02 моль, (CaCO 3) = 1,5/100 = 0,015 моль.

Для того чтобы весь Ca(OH) 2 перешел в CaCO 3 , через исходный раствор надо пропустить 0,02 моль CO 2 , а затем пропустить еще 0,005 моль CO 2 , чтобы 0,005 моль CaCO 3 растворилось и осталось 0,015 моль.

V(CO 2) = (0,02 + 0,005) 22,4 = 0,56 л.

Ответ . 0,56 л CO 2 .

Органическая химия

Задача 3 (химический факультет). Ароматический углеводород с одним бензольным кольцом содержит 90,91% углерода по массе. При окислении 2,64 г этого углеводорода подкисленным раствором перманганата калия выделяется 962 мл газа (при 20 °С и нормальном давлении), а при нитровании образуется смесь, содержащая два мононитропроизводных. Установите возможную структуру исходного углеводорода и напишите схемы упомянутых реакций. Сколько мононитропроизводных образуется при нитровании продукта окисления углеводорода?

Решение

1) Определим молекулярную формулу искомого углеводорода:

(С):(Н) = (90,91/12):(9,09/1) = 10:12.

Следовательно, углеводород – С 10 Н 12 (М = 132 г/моль) с одной двойной связью в боковой цепи.
2) Найдем состав боковых цепей:

(С 10 Н 12) = 2,64/132 = 0,02 моль,

(СО 2) = 101,3 0,962/(8,31 293) = 0,04 моль.

Значит, из молекулы С 10 Н 12 при окислении перманганатом калия уходят два атома углерода, следовательно, было два заместителя: СН 3 и С(СН 3)=СН 2 или СН=СН 2 и С 2 Н 5 .
3) Определим относительную ориентацию боковых цепей: два мононитропроизводных при нитровании дает только параизомер:

При нитровании продукта полного окисления – терефталевой кислоты – образуется только одно мононитропроизводное.

Биохимия

Задача 4 (биологический факультет). При полном гидролизе 49,50 г олигосахарида образовался только один продукт – глюкоза, при спиртовом брожении которой получено 22,08 г этанола. Установите число остатков глюкозы в молекуле олигосахарида и рассчитайте массу воды, необходимой для гидролиза, если выход реакции брожения – 80%.

N /(n – 1) = 0,30/0,25.

Откуда n = 6.
Ответ . n = 6; m (H 2 O) = 4,50 г.

Задача 5 (медицинский факультет). При полном гидролизе пентапептида Met-энкефалина были получены следующие аминокислоты: глицин (Gly) – H 2 NCH 2 COOH, фенилаланин (Phe) – H 2 NCH(CH 2 C 6 H 5)COOH, тирозин (Tyr) – H 2 NCH(CH 2 C 6 H 4 OH)COOH, метионин (Met) – H 2 NCH(CH 2 CH 2 SCH 3)COOH. Из продуктов частичного гидролиза этого же пептида были выделены вещества с молекулярными массами 295, 279 и 296. Установите две возможные последовательности аминокислот в данном пептиде (в сокращенных обозначениях) и рассчитайте его молярную массу.

Решение
По молярным массам пептидов можно установить их состав, пользуясь уравнениями гидролиза:

дипептид + H 2 O = аминокислота I + аминокислота II,
трипептид + 2H 2 O = аминокислота I + аминокислота II + аминокислота III.
Молекулярные массы аминокислот:

Gly – 75, Phe – 165, Tyr – 181, Met – 149.

295 + 2 18 = 75 + 75 + 181,
трипептид – Gly–Gly–Tyr;

279 + 2 18 = 75 + 75 + 165,
трипептид – Gly–Gly–Phe;

296 + 18 = 165 + 149,
дипептид – Phe–Met.

Эти пептиды можно объединить в пентапептид таким образом:

M = 296 + 295 – 18 = 573 г/моль.

Возможна также прямо противоположная последовательность аминокислот:

Tyr–Gly–Gly–Phe–Met.

Ответ .
Met–Phe–Gly–Gly–Tyr,
Tyr–Gly–Gly–Phe–Met; M = 573 г/моль.

Конкурс на химический факультет МГУ и в другие химические вузы в последние годы остается стабильным, а уровень подготовки абитуриентов растет. Поэтому, подводя итоги, мы утверждаем, что, несмотря на сложные внешние и внутренние обстоятельства, химическое образование в России имеет хорошие перспективы. Главное, что нас в этом убеждает, – неиссякающий поток юных талантов, увлеченных нашей любимой наукой, стремящихся получить хорошее образование и принести пользу своей стране.

В.В.ЕРЕМИН ,
доцент химического факультета МГУ,
Н.Е.КУЗЬМЕНКО,
профессор химического факультета МГУ
(Москва)

Завьялова Ф.Д., учитель химии МАОУ «СОШ №3» с углубленным изучением отдельных предметов имени Героя России Игоря Ржавитина, ГО Ревда

Роль химии в современном мире? Химия — это область естественных наук, изучающая строение различных веществ, а также их взаимосвязь с окружающей средой. Для нужд человечества химическое образование имеет огромное значение. Во второй половине 20 века государство вкладывало средства в развитие химической науки, в результате появились новые открытия в области фармацевтического и промышленного производства, в связи с этим расширялась химическая промышленность, и это способствовало появлению востребованности в квалифицированных специалистов. На сегодняшний день химическое образование в нашей стране находится в очевидном кризисе.

Сейчас в школе происходит последовательное выдавливание естественных наук из школьного курса. Слишком много сократили время на изучения предметов естественного цикла, основное внимание уделяют патриотическому и нравственному воспитанию, перепутав образование с воспитанием, в результате, выпускники школ сегодня не понимают простейших химических законов. И многие учащиеся думают, что химия – это бесполезный предмет, и в будущем от нее не будет никакого прока.

А основной целью образования является развитие умственных способностей – это тренировка памяти, обучение логике, умению устанавливать причинноследственные связи, построению моделей, развитие абстрактного и пространственного мышления. Определяющую роль в этом играют естественные науки, которые отражают объективные законы развития природы. Химия изучает разные пути направления химических реакций и разнообразие веществ, поэтому занимает в ряду естественных наук особое место как инструмент развития умственных способностей школьников. Может сложиться так, что человек в своей профессиональной деятельности никогда не столкнется с химическими проблемами, но при изучении химии в школе будет развиваться способность мыслить.

Изучение одних только иностранных языков и других гуманитарных дисциплин недостаточно для формирования интеллекта современного человека. Четкое понимание того, как одни явления порождают другие, составление плана действий, моделирование ситуаций и поиск оптимальных решений, умение предвидеть последствия предпринимаемых действий – всему этому можно научиться только на базе естественных наук. Эти знания и умения необходимы абсолютно всем.

Отсутствие этих знаний и умений приводит к хаосу. С одной стороны, мы слышим призывы к инновациям в технологической сфере, углублению переработки сырья, внедрению энергосберегающих технологий, с другой стороны, наблюдаем сокращение естественнонаучных предметов в школе. Почему так происходит? Непонятно?!

Следующая важнейшая цель школьного образования – это подготовка к будущей взрослой жизни. Молодой человек должен войти в нее во всеоружии знаний о мире, что включает не только мир людей, но и мир вещей, и окружающую природу. Знания о материальном мире, о веществах, материалах и технологиях, с которыми они могут столкнуться в повседневной жизни дают естественные науки. Изучение только гуманитарных дисциплин приводит к тому, что подростки перестают понимать материальный мир и начинают бояться его. Отсюда – они уходят от реальности в виртуальное пространство.

Большая часть людей живет все же в материальном мире, постоянно контактирует с различными веществами и материалами и подвергает их, различным химическим и физико-химическим превращениям. Знания, как обращаться с веществами, человек получает в школе на уроках химии. Он может забыть формулу серной кислоту, но обращаться с ней всю жизнь будет с осторожностью. Он не закурит на бензоколонке и вовсе не потому, что видел, как горит бензин. Просто в школе на уроке химии ему объяснили, что бензин имеет свойство испаряться, образовывать взрывоопасные смеси с воздухом и гореть. Поэтому больше времени необходимо уделять освоению химии, и считаю, что напрасно сократили часы на изучение химии в школах.

На уроках естественного цикла готовят учащихся и к будущей профессии. Ведь предсказать, какие профессии будут наиболее востребованы через 20 лет, невозможно. По сведениям Департамента по труду и занятости населения сегодня профессии, связанные с химией, возглавляют список наиболее востребованных на рынке труда. Сейчас практически все товары, которые использует человек, тем или иным образом связаны с технологиями, в которых применяют химические реакции. Например, очистка топлива, использование пищевых красителей, моющие средства, пестициды для удобрения и так далее.

Профессии, связанные с химией – это не только специалисты, работающие в нефтеперерабатывающих и газодобывающих отраслях, а также те профессии, которые могут гарантировать работу практически в любом регионе.

Список наиболее востребованных специальностей:

  • Химик-технолог, инженер-технолог, всегда сможет найти место на производстве города. В зависимости от профиля обучения, может работать на пищевых или на промышленных предприятиях. Главной задачей этого специалиста является контроль качества продукции, а также внедрение инноваций в производство.
  • Химик-эколог, в каждом городе есть отдел, следящий за экологической ситуацией.
  • Химик-косметолог – очень популярное направление, особенно в тех регионах, где есть большие косметические предприятия.
  • Фармацевт. Высшее образование дает возможность работать в крупных компаниях, производящих лекарства, всегда можно найти себе место в городской аптеке.
  • Биотехнолог, нанохимик, эксперт по альтернативным видам энергии.
  • Криминалистика и судмедэкспертиза. В МВД тоже нужны химики, всегда есть должность штатного химика, их знания могут помочь в поимке преступников.
  • Профессия будущего — исследователи альтернативных источников энергии. Ведь вскоре запас нефти иссякнет, то же случиться и с газом, поэтому спрос на таких специалистов растет. И может быть, через 10-20 лет химики этого направления возглавят список самых востребованных специалистов.

Основными требованиями к современным специалистам является хорошая память и аналитический склад ума, креативность, новаторские идеи, творческий подход и нестандартный взгляд на привычные вещи. Большую роль в формировании этих умений и способностей играет изучение химии. А человеком, лишенным естественнонаучной базы образования, легче манипулировать.

В отличие от всех остальных живых существ человек не приспосабливается к условиям окружающей среды, а изменяет её под свои потребности. Резкое увеличение численности населения на планете произошло после великого открытия химиков, это изобретения антибиотиков и начала выпуска их в промышленных масштабах.

Учитывая все выше сказанное, думаю, что необходимо увеличить количество часов на изучение химии, и начинать знакомиться уже в младшем звене.

Если в начале прошлого века под образованием понималось обучение счёту, чтению и письму, то спустя столетие в это понятие мы вкладываем обеспечение реализации потребности человека в развитии. Образование для нас стало устойчивым развитием, и оно должно быть качественным.

Литература:

  1. Российская Академия наук – о Менделеевском съезде в Екатеринбурге
  2. Какая химия должна изучаться в современной школе? — Генрих Владимирович Эрлих - доктор химических наук, ведущий научный сотрудник МГУ им. М. В. Ломоносова.