Строение почек: анатомические и гистологические особенности. Почки

Глава 19. СИСТЕМА ОРГАНОВ МОЧЕОБРАЗОВАНИЯ И МОЧЕВЫВЕДЕНИЯ

Глава 19. СИСТЕМА ОРГАНОВ МОЧЕОБРАЗОВАНИЯ И МОЧЕВЫВЕДЕНИЯ

К мочевым органам относятся почки, мочеточники, мочевой пузырь и мочеиспускательный канал. Почки являются мочеобразующими органами, а остальные составляют мочевыводящие пути.

Развитие. В эмбриогенезе последовательно закладываются три парных выделительных органа: передняя почка, или предпочка (pronephros), первичная почка (mesonephros) и постоянная, или окончательная, почка (metanephros).

Предпочка образуется из передних 8-10 сегментных ножек (нефротомов) мезодермы. Предпочка состоит из эпителиальных трубочек, один конец которых слепо замкнут и обращен к целому, а другой конец обращен в сторону сомитов, где канальцы, объединяясь, формируют мезонефраль-ный (вольфов) проток. У зародыша человека предпочка не функционирует в качестве мочеобразующего органа и вскоре после закладки подвергается обратному развитию. Однако мезонефральный проток сохраняется и растет в каудальном направлении.

Первичная почка формируется из большого числа сегментных ножек (до 25), расположенных в области туловища зародыша. Сегментные ножки отшнуровываются от сомитов и спланхнотома и превращаются в слепые канальцы первичной почки. Канальцы растут по направлению к мезонефральному протоку и одним концом сливаются с ним. Навстречу к другому концу канальца первичной почки растут сосуды от аорты, которые распадаются на капиллярные клубочки. Каналец своим слепым концом обрастает капиллярный клубочек, образуя капсулу клубочка. Капиллярные клубочки и капсулы вместе формируют почечные тельца. Возникший при развитии предпочки мезонефральный проток открывается в заднюю кишку.

Окончательная почка закладывается у зародыша на 2-м мес, но развитие ее заканчивается лишь после рождения ребенка. Эта почка образуется из двух источников - мезонефрального протока и нефрогенной ткани. Последняя представляет собой не разделенные на сегментные ножки участки мезо-

дермы в каудальной части зародыша. Мезонефральный проток растет по направлению к нефрогенному зачатку, и из него в дальнейшем формируются мочеточник, почечная лоханка с почечными чашками, а от последних - возникают выросты, превращающиеся в собирательные протоки и трубочки. Эти трубочки играют роль индуктора при развитии канальцев в нефрогенном зачатке. Из последнего образуются скопления клеток, которые превращаются в замкнутые пузырьки. Разрастаясь в длину, пузырьки превращаются в слепые почечные канальцы, которые в процессе роста S-образно изгибаются. При взаимодействии стенки канальца, прилежащей к слепому выросту собирательной трубочки, происходит объединение их просветов. Противоположный слепой конец почечного канальца приобретает вид двухслойной чаши, в углубление которой врастает клубочек артериальных капилляров. Здесь формируется сосудистый клубочек почки, который вместе с капсулой образует почечное тельце.

Образовавшись, окончательная почка начинает быстро расти и с 3-го мес оказывается лежащей выше первичной почки, которая во второй половине беременности атрофируется.

19.1. ПОЧКИ

Почка (ren) - парный орган, в котором непрерывно образуется моча. Почки регулируют водно-солевой обмен между кровью и тканями, поддерживают кислотно-основное равновесие в организме, выполняют эндокринные функции.

Строение. Почка располагается в забрюшинном пространстве поясничной области. Снаружи почка покрыта соединительнотканной капсулой и, кроме того, спереди серозной оболочкой. Вещество почки подразделяется на корковое и мозговое. Корковое вещество (cortex renis) темно-красного цвета, располагается общим слоем под капсулой.

Мозговое вещество (medulla renis) более светлой окраски, разделено на 8- 12 пирамид. Вершины пирамид, или сосочки, свободно выступают в почечные чашки. В процессе развития почки ее корковое вещество, увеличиваясь в массе, проникает между основаниями пирамид в виде почечных колонок. В свою очередь мозговое вещество тонкими лучами врастает в корковое, образуя мозговые лучи.

Строму почки составляет рыхлая соединительная (интерстициальная) ткань. Паренхима почки представлена эпителиальными почечными канальцами (tubuli renales), которые при участии кровеносных капилляров образуют нефроны (рис. 19.1). В каждой почке их насчитывают около 1 млн.

Нефрон (nephronum) - структурная и функциональная единица почки. Длина его канальцев до 50 мм, а всех нефронов - в среднем около 100 км. Нефрон переходит в собирательную трубочку, объединение нескольких собирательных трубочек нефронов дает собирательный проток, который продолжается в сосочковый канал, открывающийся сосочковым отверстием на вершине пирамиды в полость почечной чашки. В состав нефрона входят кап-

Рис. 19.1. Различные типы нефронов (схема):

I - корковое вещество; II - мозговое вещество; Н - наружная зона; В - внутренняя зона; Д - длинный (юкстамедуллярный) нефрон; П - промежуточный нефрон; К - короткий нефрон. 1 - капсула клубочка; 2 - извитой и проксимальный канальцы; 3 - проксимальный прямой каналец; 4 - нисходящий сегмент тонкого канальца; 5 - восходящий сегмент тонкого канальца; 6 - прямой дистальный каналец; 7 - извитой дистальный каналец; 8 - собирательная трубочка; 9 - сосочковый канал; 10 - полость почечной чашки

сула клубочка (capsula glomeruli), проксимальный извитой каналец (tubulus contortus proximalis), проксимальный прямой каналец (tubulus rectus proximalis), тонкий каналец (tubulus attenuatus), в котором различают нисходящий сегмент (crus descendens) и восходящий сегмент (crus ascendens), дистальный прямой каналец (tubulus rectus distalis) и дистальный извитой каналец (tubulus contortus distalis). Тонкий каналец и дистальный прямой каналец образуют петлю нефрона (петля Генле). Почечное тельце (corpusculum renale) включает сосудистый клубочек (glomerulus) и охватывающую его капсулу клубочка. У большинства нефронов петли спускаются на разную глубину в наружную зону мозгового вещества. Это соответственно короткие поверхностные нефроны (15-20 %) и промежуточные нефроны (70 %). Остальные 15 % нефронов располагаются в почке так, что их почечные тельца, извитые проксимальные и дистальные канальцы лежат в корковом веществе на границе с мозговым веществом, тогда как петли глубоко уходят во внутреннюю зону мозгового вещества. Это длинные, или околомозговые (юкстамедуллярные), нефроны (см. рис. 19.1).

Собирательные почечные трубочки, в которые открываются нефроны, начинаются в корковом веществе, где они входят в состав мозговых лучей. Собирательные трубочки нефронов переходят в мозговое вещество, объединяются, формируя собирательный проток, который у вершины пирамиды вливается в сосочковый канал.

Таким образом, корковое и мозговое вещества почек образованы различными отделами трех разновидностей нефронов. Их топография в почках имеет значение для процессов мочеобразования. Корковое вещество составляют почечные тельца, извитые проксимальные и дистальные канальцы всех типов нефронов (рис. 19.2, а). Мозговое вещество состоит из прямых проксимальных и дистальных канальцев, тонких нисходящих и восходящих канальцев (рис. 19.2, б). Их расположение в наружной и внутренней зонах мозгового вещества, а также принадлежность к различным типам нефро-нов - см. рис. 19.1.

Васкуляризация. Кровь поступает к почкам по почечным артериям, которые, войдя в почки, распадаются на междолевые артерии (аа. interlobares), идущие между мозговыми пирамидами. На границе между корковым и мозговым веществом они разветвляются на дуговые артерии (аа. arcuatae). От них в корковое вещество отходят междольковые артерии (аа. interlobulares). От междольковых артерий в стороны расходятся внутридольковые артерии (аа. intralobulares), от которых начинаются приносящие артериолы (arteriolae afferentes). От верхних внутридольковых артерий приносящие артериолы направляются к коротким и промежуточным нефронам, от нижних - к юкстамедуллярным (околомозговым) нефронам. В связи с этим в почках условно различают кортикальное кровообращение и юкстамедуллярное кровообращение (рис. 19.3). В кортикальной системе кровообращения приносящая клубочковая артериола (arteriola glomerularis afferentes) распадается на капилляры, образующие сосудистый клубочек (glomerulus) почечного тельца нефрона. Капилляры клубочка собираются в выносящую клубочко-вую артериолу (arteriola glomerularis efferentes), которая несколько меньше по диаметру, чем приносящая артериола. В капиллярах клубочков корковых

Рис. 19.2. Корковое и мозговое вещество почки (микрофотография): а - корковое вещество; б - мозговое вещество. 1 - почечное тельце; 2 - проксимальный каналец нефрона; 3 - дистальный каналец нефрона; 4 - канальцы мозгового вещества

нефронов кровяное давление необычайно высокое - свыше 50 мм рт. ст. Это является важным условием для первой фазы мочеобразования - процесса фильтрации жидкости и веществ из плазмы крови в нефрон.

Выносящие артериолы, пройдя короткий путь, вновь распадаются на капилляры, оплетающие канальцы нефрона и образующие перитубулярную капиллярную сеть. В этих «вторичных» капиллярах давление крови, наоборот, относительно низкое - около 10-12 мм рт. ст., что способствует второй

Рис. 19.3. Кровоснабжение нефронов:

I - корковое вещество; II - мозговое вещество; Д - длинный (околомозговой) нефрон; П - промежуточный нефрон. 1, 2 - междолевые артерии и вена; 3, 4 - дуговая артерия и вена; 5, 6 - междольковая артерия и вена; 7 - приносящая клубочковая артериола; 8 - выносящая клубочковая артериола; 9 - клубочковая капиллярная сеть (сосудистый клубочек); 10 - перитубулярная капиллярная сеть;

11 - прямая артериола; 12 - прямая венула

фазе мочеобразования - процессу обратного всасывания части жидкости и веществ из нефрона в кровь.

Из капилляров кровь перитубулярной сети собирается в верхних отделах коркового вещества сначала в звездчатые вены, а затем в междолько-вые, в средних отделах коркового вещества - прямо в междольковые вены. Последние впадают в дуговые вены, переходящие в междолевые, которые образуют почечные вены, выходящие из ворот почек.

Таким образом, нефроны в связи с особенностями кортикального кровообращения (высокое кровяное давление в капиллярах сосудистых клубочков и наличие перитубулярной сети капилляров с низким давлением крови) активно участвуют в мочеобразовании.

В юкстамедуллярной системе кровообращения приносящие и выносящие артериолы сосудистых клубочков почечных телец околомозговых нефронов примерно одинакового диаметра или диаметр выносящего сосуда больше диаметра приносящего сосуда. По этой причине кровяное давление в капиллярах этих клубочков ниже, чем в капиллярах клубочка корковых нефронов.

Выносящие клубочковые артериолы околомозговых нефронов идут в мозговое вещество, распадаясь на пучки тонкостенных сосудов, несколько более крупных, чем обычные капилляры, - прямые сосуды (vasa recta). В мозговом веществе как от выносящих артериол, так и от прямых сосудов отходят ветви для формирования мозговой перитубулярной капиллярной сети (rete capillare peritubulare medullaris). Прямые сосуды образуют петли на различных уровнях мозгового вещества, поворачивая обратно. Нисходящие и восходящие части этих петель образуют противоточную систему сосудов, называемую сосудистым пучком (fasciculis vascularis). Капилляры мозгового вещества собираются в прямые вены, впадающие в дуговые вены.

Вследствие этих особенностей околомозговые нефроны участвуют в мочеобразовании менее активно. В то же время юкстамедуллярное кровообращение играет роль шунта, т. е. более короткого и легкого пути, по которому проходит часть крови через почки в условиях сильного кровенаполнения, например, при выполнении человеком тяжелой физической работы.

Строение нефрона. Нефрон начинается в почечном тельце (диаметр около 200 мкм), представленном сосудистым клубочком и его капсулой. Сосудистый клубочек (glomerulus) состоит более чем из 50 кровеносных капилляров. Их эндотелиальные клетки имеют многочисленные фенестры диаметром до 0,1 мкм. Эндотелиальные клетки капилляров располагаются на внутренней поверхности гломерулярной базальной мембраны. С наружной стороны на ней лежит эпителий внутреннего листка капсулы клубочка (рис. 19.4). Так возникает толстая (300 нм) трехслойная базальная мембрана.

Капсула клубочка (capsula glomeruli) по форме напоминает двустенную чашу, образованную внутренним и наружным листками, между которыми находится щелевидная полость - мочевое пространство капсулы, переходящее в просвет проксимального канальца нефрона.

Внутренний листок капсулы проникает между капиллярами сосудистого клубочка и охватывает их почти со всех сторон. Он образован крупными

Рис. 19.4. Строение почечного тельца с юкстагломерулярным аппаратом (по Е. Ф. Котовскому):

1 - приносящая клубочковая артериола; 2 - выносящая клубочковая артериола; 3 - капилляры сосудистого клубочка; 4 - эндотелиоциты; 5 - подоциты внутреннего листка капсулы клубочка; 6 - базальная мембрана; 7 - мезангиальные клетки; 8 - полость капсулы клубочка; 9 - наружный листок капсулы клубочка; 10 - дис-тальный каналец нефрона; 11 - плотное пятно; 12 - эндокриноциты (юкстагломеру-лярные миоциты); 13 - юкставаскулярные клетки; 14 - строма почки

(до 30 мкм) неправильной формы эпителиальными клетками - подоцитами (podocyti). Последние синтезируют компоненты гломерулярной базальной мембраны, образуют вещества, регулирующие кровоток в капиллярах и ингибирующие пролиферацию мезангиоцитов (см. ниже). На поверхности подоцитов есть рецепторы комплемента и антигенов, что свидетельствует об активном участии этих клеток в иммунных и воспалительных реакциях.

Рис. 19.5. Ультрамикроскопическое строение фильтрационного барьера почек (по Е. Ф. Котовскому):

1 - эндотелиоцит кровеносного капилляра сосудистого клубочка; 2 - гломеру-лярная базальная мембрана; 3 - подоцит внутреннего листка капсулы клубочка; 4 - цитотрабекула подоцита; 5 - цитоподии подоцита; 6 - фильтрационная щель; 7 - фильтрационная диафрагма; 8 - гликокаликс; 9 - мочевое пространство капсулы; 10 - часть эритроцита в капилляре

От тел подоцитов отходят несколько больших широких отростков - цито-трабекулы, от которых в свою очередь начинаются многочисленные мелкие отростки - цитоподии, прикрепляющиеся к гломерулярной базальной мембране. Между цитоподиями располагаются узкие фильтрационные щели, сообщающиеся через промежутки между телами подоцитов с полостью капсулы. Фильтрационные щели заканчиваются щелевой пористой диафрагмой. Она представляет собой барьер для альбуминов и других крупномолекулярных веществ. На поверхности подоцитов и их ножек имеется отрицательно заряженный слой гликокаликса.

Гломерулярная базальная мембрана, являющаяся общей для эндотелия кровеносных капилляров и подоцитов внутреннего листка капсулы, включает менее плотные (светлые) наружную и внутреннюю пластинки (lam. rara ext. еt interna) и более плотную (темную) среднюю пластинку (lam. densa). Структурная основа гломерулярной базальной мембраны представлена коллагеном IV типа, формирующим сеть с диаметром ячеек до 7 нм, и белком - ламинином, обеспечивающим адгезию (прикрепление) к мембране ножек подоцитов и эндотелиоцитов капилляров. Кроме того, в мембране содержатся протеогликаны, которые создают отрицательный заряд, нарастающий от эндотелия к подоцитам. Все три названных компонента: эндотелий капилляров клубочка, подоциты внутреннего листка капсулы и общая для них гломерулярная базальная мембрана - составляют фильтра-

ционный барьер, через который из крови в мочевое пространство капсулы фильтруются составные части плазмы крови, образующие первичную мочу (рис. 19.5). Повышению скорости фильтрации способствует предсердный натрийуретический фактор.

Таким образом, в составе почечных телец находится почечный фильтр. Он участвует в первой фазе мочеобразования - фильтрации. Почечный фильтр обладает избирательной проницаемостью, задерживает отрицательно заряженные макромолекулы, а также все то, что больше размеров пор в щелевых диафрагмах и больше ячеек гломерулярной мембраны. В норме через него не проходят форменные элементы крови и некоторые белки плазмы крови - иммунные тела, фибриноген и другие, которые имеют большую молекулярную массу и отрицательный заряд. При повреждениях почечного фильтра, например при нефритах, они могут обнаруживаться в моче больных.

В сосудистых клубочках почечных телец в тех местах, куда между капиллярами не могут проникнуть подоциты внутреннего листка капсулы, находится мезангий (см. рис. 19.4). Он состоит из клеток - мезангиоцитов и основного вещества - матрикса.

Выделяют три популяции мезангиоцитов: гладкомышечный, макрофагический и транзиторный (моноциты из кровотока). Мезангиоциты гладкомышечного типа способны синтезировать все компоненты матрикса, а также сокращаться под влиянием ангиотензина, гистамина, вазопрессина и таким образом регулировать клу-бочковый кровоток. Мезангиоциты макрофагического типа захватывают макромолекулы, проникающие в межклеточное пространство. Мезангиоциты также вырабатывают фактор активации тромбоцитов.

Основными компонентами матрикса являются адгезивный белок лами-нин и коллаген, образующий тонкофибриллярную сеть. Вероятно, матрикс участвует в фильтрации веществ из плазмы крови капилляров клубочка. Наружный листок капсулы клубочка представлен одним слоем плоских и кубических эпителиальных клеток, расположенных на базальной мембране. Эпителий наружного листка капсулы переходит в эпителий проксимального отдела нефрона.

Проксимальный отдел имеет вид извитого и короткого прямого канальца диаметром до 60 мкм с узким неправильной формы просветом. Стенка канальца образована однослойным кубическим микроворсинчатым эпителием. Он осуществляет реабсорбцию, т. е. обратное всасывание в кровь (в капилляры перитубулярной сети) из первичной мочи ряда содержащихся в ней веществ - белков, глюкозы, электролитов, воды. Механизм этого процесса связан с гистофизиологией эпителиоцитов проксимального отдела. Поверхность этих клеток имеет микроворсинки с высокой активностью щелочной фосфатазы, участвующей в полном обратном всасывании глюкозы. В цитоплазме клеток образуются пиноцитозные пузырьки и находятся лизосомы, богатые протеолитическими ферментами. Путем пиноци-тоза клетки поглощают из первичной мочи белки, которые расщепляются в цитоплазме под влиянием лизосомальных ферментов до аминокислот. Последние транспортируются в кровь перитубулярных капилляров. В своей

Рис. 19.6. Ультрамикроскопическое строение проксимального (а) и дистального (б) канальцев нефрона (по Е. Ф. Котовскому):

1 - эпителиоциты; 2 - базальная мембрана; 3 - микроворсинчатая каемка; 4 - пиноцитозные пузырьки; 5 - лизосомы; 6 - базальная исчерченность; 7 - кровеносный капилляр

базальной части клетки имеют исчерченность - базальный лабиринт, образованный внутренними складками плазмолеммы и расположенными между ними митохондриями. Складки плазмолеммы, богатые ферментами, Na+-, К + -АТФ-азами, и митохондрии, содержащие фермент сукцинатдегидроге-назу (СДГ), играют важную роль в обратном активном транспорте электролитов (Na+, К + , Са 2 + и др.), что в свою очередь имеет большое значение для пассивного обратного всасывания воды (рис. 19.6). В прямой части проксимального канальца, кроме того, в его просвет секретируются некоторые органические продукты - креатинин и др.

В результате реабсорбции и секреции в проксимальных отделах первичная моча претерпевает значительные качественные изменения: так, из нее полностью исчезают сахар и белок. При заболевании почек эти вещества могут обнаруживаться в окончательной моче больного вследствие поражения клеток проксимальных отделов нефронов.

Петля нефрона состоит из тонкого канальца и прямого дистального канальца. В коротких и промежуточных нефронах тонкий каналец имеет только нисходящий сегмент, а в юкстамедуллярных нефронах и длинный восходящий сегмент, который переходит в прямой (толстый) дистальный каналец. Тонкий каналец имеет диаметр около 15 мкм. Стенка его образована плоскими эпителиоцитами (рис. 19.7). В нисходящих тонких канальцах цитоплазма эпителиоцитов светлая, бедная органеллами и ферментами. В этих канальцах происходит пассивная реабсорбция воды на основе разности осмотического давления между мочой в канальцах и тканевой жидкостью интерстициальной ткани, в которой проходят сосуды мозгового вещества. В восходящих тонких канальцах эпителиоциты отличаются высокой активностью ферментов Na+-, ^-АТФ-азы в плазмолемме и СДГ в

Рис. 19.7. Ультрамикроскопическое строение тонкого канальца петли нефрона (а) и собирательной трубочки (б) почки (по Е. Ф. Котовскому):

1 - эпителиоциты; 2 - базальная мембрана; 3 - светлые эпителиоциты; 4 - темные эпителиоциты; 5 - микроворсинки; 6 - инвагинации плазмолеммы; 7 - кровеносный капилляр

митохондриях. С помощью этих ферментов здесь реабсорбируются электролиты - Na, C1 и др.

Дистальный каналец имеет больший диаметр - в прямой части до 30 мкм, в извитой - от 20 до 50 мкм (см. рис. 19.6). Он выстлан низким цилиндрическим эпителием, клетки которого лишены микроворсинок, но имеют базальный лабиринт с высокой активностью Na+-, K-АТФ-азы и СДГ. Прямая часть и прилежащая к ней извитая часть дистального канальца почти непроницаемы для воды, но активно осуществляют реаб-сорбцию электролитов под влиянием гормона альдостерона надпочечников. В результате реабсорбции из канальцев электролитов и задержки воды в восходящих тонких и прямых дистальных канальцах моча становится гипотонической, т. е. слабо концентрированной, тогда как в интер-стициальной ткани повышается осмотическое давление. Это вызывает пассивный транспорт воды из мочи в нисходящих тонких канальцах и главным образом в собирательных трубочках в интерстициальную ткань мозгового вещества почки, а затем в кровь.

Собирательные почечные трубочки в верхней корковой части выстланы однослойным кубическим эпителием, а в нижней мозговой части (в собирательных протоках) - однослойным низким цилиндрическим эпителием. В эпителии различают светлые и темные клетки. Светлые клетки

бедны органеллами, их цитоплазма образует внутренние складки. Темные клетки по своей ультраструктуре напоминают париетальные клетки желез желудка, секретирующие хлористоводородную кислоту (см. рис. 19.7). В собирательных трубках с помощью светлых клеток и их водных каналов завершается обратное всасывание воды из мочи. Кроме того, происходит подкисление мочи, что связано с секреторной деятельностью темных эпи-телиоцитов, выделяющих в просвет трубочек катионы водорода.

Реабсорбция воды в собирательных трубочках зависит от концентрации в крови антидиуретического гормона гипофиза. В его отсутствие стенка собирательных трубочек и конечных частей извитых дистальных канальцев непроницаема для воды, поэтому концентрация мочи не повышается. В присутствии гормона стенки указанных канальцев становятся проницаемы для воды, которая выходит пассивно путем осмоса в гипертоническую среду интерстициальной ткани мозгового вещества и затем переносится в кровеносные сосуды. В этом процессе важную роль играют прямые сосуды (сосудистые пучки). В результате по мере продвижения по собирательным трубочкам моча становится все более концентрированной и из организма выделяется в виде гипертонической жидкости.

Таким образом, расположенные в мозговом веществе канальцы нефронов (тонкие, прямые дистальные) и медуллярные отделы собирательных трубочек, гиперосмолярная интерстициальная ткань мозгового вещества и прямые сосуды и капилляры составляют противоточно-множительный аппарат почек (рис. 19.8). Он обеспечивает концентрирование и уменьшение объема выделяемой мочи, что является механизмом для регуляции водно-солевого гомеостаза в организме. Этот аппарат задерживает в организме соли и жидкость посредством их обратного всасывания (реабсорбции).

Итак, мочеобразование - сложный процесс, в котором участвуют сосудистые клубочки, нефроны, собирательные трубочки и интерстициальная ткань с кровеносными капиллярами и прямыми сосудами. В почечных тельцах нефронов происходит первая фаза этого процесса - фильтрация, в результате чего образуется первичная моча (более 100 л в сутки). В канальцах нефронов и в собирательных трубочках протекает вторая фаза моче-образования, т. е. реабсорбция, следствием чего является качественное и количественное изменение мочи. Из нее полностью исчезают сахар и белок, а также вследствие обратного всасывания большей части воды (при участии интерстициальной ткани) снижается количество мочи (до 1,5-2 л в сутки), что приводит к резкому возрастанию в окончательной моче концентрации выделяемых шлаков: креатиновых тел - в 75 раз, аммиака - в 40 раз и т. п. Заключительная (третья) секреторная фаза мочеобразования осуществляется в канальцах нефронов и собирательных трубочках, где реакция мочи становится слабокислой (см. рис. 19.8).

Эндокринная система почек. Эта система участвует в регуляции кровообращения и мочеобразования в почках и оказывает влияние на общую гемодинамику и водно-солевой обмен в организме. К ней относятся ренин-ангиотензиновый, простагландиновый и калликреин-кининовый аппараты (системы).

Рис. 19.8. Строение противоточно-множительного аппарата почки: 1 - почечное тельце; 2 - проксимальный прямой каналец нефрона; 3 - тонкий каналец (нисходящий сегмент петли нефрона); 4 - дистальный прямой каналец нефрона; 5 - собирательная трубочка; 6 - кровеносные капилляры; 7 - интерсти-циальные клетки; С - сахар; Б - белки

Ренин-ангиотензиновый аппарат, или юкстагломерулярный комплекс (ЮГК), т. е. околоклубочковый, секретирует в кровь активное вещество - ренин. Он катализирует образование в организме ангиотензинов, оказывающих сосудосуживающее влияние и вызывающих повышение артериального давления, а также стимулирует продукцию гормона альдостерона в надпочечниках и вазопрессина (антидиуретического) в гипоталамусе.

Альдостерон увеличивает в канальцах нефронов реабсорбцию ионов Na и С1, что вызывает их задержку в организме. Вазопрессин, или антидиуретический гормон, снижает кровоток в клубочках нефронов и увеличивает реабсорбцию воды в собирательных трубочках, задерживая ее таким образом в организме и вызывая снижение количества выделяемой мочи. Сигналом для секреции ренина в кровь является снижение кровяного давления в приносящих артериолах сосудистых клубочков.

Кроме того, возможно, что ЮГК принадлежит важная роль в выработке эритропоэтинов. В состав ЮГК входят юкстагломерулярные миоциты, эпи-телиоциты плотного пятна и юкставаскулярные клетки (клетки Гурмагтига) (см. рис. 19.4).

Юкстагломерулярные миоциты лежат в стенке приносящих и выносящих артериол под эндотелием. Они имеют овальную или полигональную форму, а в цитоплазме - крупные секреторные (рениновые) гранулы, которые не окрашиваются обычными гистологическими методами, но дают положительную ШИК-реакцию.

Плотное пятно (macula densa) - участок стенки дистального отдела нефро-на в том месте, где он проходит рядом с почечным тельцем между приносящей и выносящей артериолами. В плотном пятне эпителиальные клетки более высокие, почти лишены базальной складчатости, а их базальная мембрана чрезвычайно тонкая (по некоторым данным, полностью отсутствует). Плотное пятно представляет собой натриевый рецептор, который улавливает изменения содержания натрия в моче и воздействует на околоклубоч-ковые миоциты, секретирующие ренин.

Клетки Турмагтига лежат в треугольном пространстве между приносящей и выносящей артериолами и плотным пятном (периваскулярный островок мезангия). Клетки имеют овальную или неправильную форму, образуют далеко простирающиеся отростки, контактирующие с юкстагломерулярны-ми миоцитами и эпителиоцитами плотного пятна. В их цитоплазме выявляются фибриллярные структуры.

Периполярные эпителиоциты (с хеморецепторными свойствами) - располагаются по периметру основания сосудистого полюса в виде манжетки между клетками наружного и внутреннего листков капсулы сосудистого клубочка. Клетки содержат секреторные гранулы диаметром 100-500 нм, выделяют секрет в полость капсулы. В гранулах определяются иммунореактивный альбумин, иммуноглобулин и др. Предполагается влияние секрета клеток на процессы канальцевой реабсорбции.

Интерстициальные клетки, имеющие мезенхимное происхождение, располагаются в соединительной ткани мозговых пирамид. От их вытянутого или звездчатой формы тела отходят отростки; некоторые из них оплетают канальцы петли нефро-нов, а другие - кровеносные капилляры. В цитоплазме интерстициальных клеток хорошо развиты органеллы и находятся липидные (осмиофильные) гранулы. Клетки синтезируют простагландины и брадикинин. Простагландиновый аппарат по своему действию на почки является антагонистом ренин-ангиотензинового аппарата. Простагландины оказывают сосудорасширяющее действие, увеличивают клубочковый кровоток, объем выделяемой мочи и экскрецию с ней ионов Na. Стимулами для выделения простагландинов в почках являются ишемия, повышение содержания ангиотензина, вазопрессина, кининов.

Калликреин-кининовый аппарат оказывает сильное сосудорасширяющее действие и повышает натрийурез и диурез путем угнетения реабсорбции ионов Na и воды в канальцах нефронов. Кинины - это небольшие пептиды, которые образуются под влиянием ферментов калликреинов из белков предшественников кини-ногенов, содержащихся в плазме крови. В почках калликреины выявляются в клетках дистальных канальцев, и на их уровне происходит высвобождение кининов. Вероятно, свое действие кинины оказывают, стимулируя секрецию простагланди-нов.

Таким образом, в почках существует эндокринный комплекс, участвующий в регуляции общего и почечного кровообращения, а через него оказывающий влияние на мочеобразование. Он функционирует на основе взаимодействий, которые могут быть представлены в виде схемы:

Лимфатическая система почки представлена сетью капилляров, окружающих канальцы коркового вещества и почечные тельца. В сосудистых клубочках лимфатических капилляров нет. Лимфа из коркового вещества оттекает через футляро-образную сеть лимфатических капилляров, окружающих междольковые артерии и вены, в отводящие лимфатические сосуды 1-го порядка, которые в свою очередь окружают дуговые артерии и вены. В эти сплетения лимфатических сосудов впадают лимфатические капилляры мозгового вещества, окружающие прямые артерии и вены. В остальных участках мозгового вещества они отсутствуют.

Лимфатические сосуды 1-го порядка образуют более крупные лимфатические коллекторы 2-го, 3-го и 4-го порядка, которые вливаются в междолевые синусы почки. Из этих сосудов лимфа поступает в регионарные лимфатические узлы.

Иннервация. Иннервацию почки осуществляют эфферентные симпатические и парасимпатические нервы и афферентные заднекорешковые нерв-

ные волокна. Распределение нервов в почке различное. Одни из них имеют отношение к сосудам почки, другие - к почечным канальцам. Почечные канальцы снабжаются нервами симпатической и парасимпатической систем. Их окончания локализуются под базальной мембраной эпителия. Однако, по некоторым данным, нервы могут проходить через базальную мембрану и оканчиваться на эпителиальных клетках почечных канальцев. Описаны также поливалентные окончания, когда одна веточка нерва заканчивается на почечном канальце, а другая - на капилляре.

Возрастные изменения. Выделительная система человека в постнатальном периоде продолжает развиваться в течение длительного срока. Так, по толщине корковый слой у новорожденного составляет всего 1/4-1/5, а у взрослого - 1/2-1/3 толщины мозгового вещества. Однако при этом увеличение массы почечной ткани связано не с образованием новых, а с ростом и диф-ференцировкой уже существующих нефронов, которые в детском возрасте развиты не полностью. В почке ребенка обнаруживается большое число нефронов с мелкими нефункционирующими и слабодифференцированны-ми клубочками. Диаметр извитых канальцев нефронов у детей в среднем 18-36 мкм, тогда как у взрослого диаметр равен 40-60 мкм. Особенно резким изменениям с возрастом подвергается длина нефронов. Их рост продолжается вплоть до половой зрелости. Поэтому с возрастом, по мере увеличения массы канальцев, количество клубочков на единицу площади сечения почки уменьшается.

Подсчитано, что на один и тот же объем почечной ткани у новорожденных приходится до 50 клубочков, у 8-10-месячных детей - 18-20, а у взрослых - 4-6 клубочков.

19.2. МОЧЕВЫВОДЯЩИЕ ПУТИ

К мочевыводящим путям относятся почечные чашки и лоханки, мочеточники, мочевой пузырь и мочеиспускательный канал, который у мужчин одновременно выполняет функцию выведения из организма семенной жидкости и поэтому описан в главе «Половая система».

Строение стенок почечных чашек и лоханок, мочеточников и мочевого пузыря в общих чертах сходно. В них различают слизистую оболочку, состоящую из переходного эпителия и собственной пластинки, подсли-зистую основу (отсутствует в чашках и лоханке), мышечную и наружную оболочки.

В стенке почечных чашек и почечных лоханок вслед за переходным эпителием располагается собственная пластинка слизистой оболочки. Мышечная оболочка состоит из тонких слоев спирально расположенных гладких миоцитов. Однако вокруг сосочков почечных пирамид миоциты принимают циркулярное расположение. Наружная адвентициальная оболочка без резких границ переходит в соединительную ткань, окружающую крупные почечные сосуды. В стенке почечных чашек находятся гладкие мио-

циты (пейсмекеры), ритмичное сокращение которых определяет поступление мочи порциями из сосочковых каналов в просвет чашки.

Мочеточники обладают способностью к растяжению благодаря наличию глубоких продольных складок слизистой оболочки. В подслизистой основе нижней части мочеточников располагаются мелкие альвеолярно-трубчатые железы, по строению сходные с предстательной железой. Мышечная оболочка, образующая в верхней части мочеточников два, а в нижней части три слоя, состоит из гладкомышечных пучков, охватывающих мочеточник в виде спиралей, идущих сверху вниз. Они являются продолжением мышечной оболочки почечных лоханок и внизу переходят в мышечную оболочку мочевого пузыря, имеющую также спиралевидное строение. Лишь в той части, где мочеточник проходит через стенку мочевого пузыря, пучки гладких мышечных клеток идут только в продольном направлении. Сокращаясь, они раскрывают отверстие мочеточника независимо от состояния гладких мышц мочевого пузыря.

Спиральная ориентация гладких миоцитов в мышечной оболочке соответствует представлению о порционном характере транспорта мочи из почечной лоханки и по мочеточнику. Согласно этому представлению, мочеточник состоит из трех, реже из двух или четырех секций - цистоидов, между которыми находятся сфинктеры. Роль сфинктеров играют расположенные в подслизистой основе и в мышечной оболочке кавернозноподоб-ные образования из широких извивающихся сосудов. В зависимости от наполнения их кровью сфинктеры оказываются закрытыми или открытыми. Происходит это последовательно рефлекторным путем по мере наполнения секции мочой и повышения давления на рецепторы, заложенные в стенке мочеточника. Благодаря этому моча поступает порциями из почечной лоханки в вышележащие, а из нее в нижележащие секции мочеточника, а затем в мочевой пузырь.

Снаружи мочеточники покрыты соединительнотканной адвентициаль-ной оболочкой.

Слизистая оболочка мочевого пузыря состоит из переходного эпителия и собственной пластинки. В ней мелкие кровеносные сосуды особенно близко подходят к эпителию. В спавшемся или умеренно растянутом состоянии слизистая оболочка мочевого пузыря имеет множество складок (рис. 19.9). Они отсутствуют в переднем отделе дна пузыря, где в него впадают мочеточники и выходит мочеиспускательный канал. Этот участок стенки мочевого пузыря, имеющий форму треугольника, лишен подслизистой основы, и его слизистая оболочка плотно сращена с мышечной оболочкой. Здесь в собственной пластинке слизистой оболочки заложены железы, подобные железам нижней части мочеточников.

Мышечная оболочка мочевого пузыря построена из трех нерезко отграниченных слоев, которые представляют собой систему спирально ориентированных и пересекающихся пучков гладкомышечных клеток. Гладкие мышечные клетки часто напоминают по форме расщепленные на концах веретена. Прослойки соединительной ткани разделяют мышечную ткань в этой оболочке на отдельные крупные пучки. В шейке мочевого пузыря

Рис. 19.9. Строение мочевого пузыря:

1 - слизистая оболочка; 2 - переходный эпителий; 3 - собственная пластинка слизистой оболочки; 4 - подслизистая основа; 5 - мышечная оболочка

циркулярный слой образует мышечный сфинктер. Наружная оболочка на верхнезадней и частично на боковых поверхностях мочевого пузыря представлена листком брюшины (серозная оболочка), в остальной его части она является адвентициальной.

Стенка мочевого пузыря богато снабжена кровеносными и лимфатическими сосудами.

Иннервация. Мочевой пузырь иннервируется как симпатическими и парасимпатическими, так и спинномозговыми (чувствительными) нервами. Кроме того, в мочевом пузыре обнаружено значительное число нервных ганглиев и рассеянных нейронов автономной нервной системы. Особенно много нейронов у места впадения в мочевой пузырь мочеточников. В серозной, мышечной и слизистой оболочках мочевого пузыря имеется также большое число рецепторных нервных окончаний.

Реактивность и регенерация. Реактивные изменения почек при действии экстремальных факторов (переохлаждение организма, отравление ядовитыми веществами, действие проникающей радиации, ожоги, травмы и др.)

весьма разнообразны с преимущественным поражением сосудистых клубочков или эпителия различных отделов нефрона вплоть до гибели нефро-нов. Регенерация нефрона происходит более полно при внутриканальцевой гибели эпителия. Наблюдаются клеточная и внутриклеточная формы регенерации. Эпителий мочевыводящих путей обладает хорошей восстановительной способностью.

Аномалии мочевыделительной системы, органогенез которой достаточно сложен, являются одним из наиболее частых пороков развития. Причинами их образования могут быть как наследственные факторы, так и действие различных повреждающих факторов - ионизирующего излучения, алкоголизма и наркомании родителей и др. Вследствие того, что нефроны и собирательные трубочки имеют разные источники развития, нарушение объединения их просветов или отсутствие такого объединения приводит к патологии развития почек (поликистоз, гидронефроз, агенезия почек и др.).

Контрольные вопросы

1. Последовательность развития мочевыделительной системы в онтогенезе у человека.

2. Понятие о структурно-функциональной единице почки. Строение и функциональное значение разных типов нефронов.

3. Эндокринная система почки: источники развития, дифферонный состав, роль в физиологии мочеобразования и регуляции общих функций организма.

Гистология, эмбриология, цитология: учебник / Ю. И. Афанасьев, Н. А. Юрина, Е. Ф. Котовский и др.. - 6-е изд., перераб. и доп. - 2012. - 800 с. : ил.

Ведущие специалисты в области нефрологии

Бова Сергей Иванови ч - Заслуженный врач Российской Федерации,заведующий урологическим отделением - рентгено-ударноволнового дистанционного дробления камней почек и эндоскопических методов лечения, ГУЗ «Областная больница №2», г. Ростов-на-Дону.

Летифов Гаджи Муталибович - зав.кафедрой педиатрии с курсом неонатологии ФПК и ППС РостГМУ, д.м.н., профессор, член Президиума Российского творческого общества детских нефрологов, член правления Ростовского областного общества нефрологов, член редакционного совета «Вестника педиатрического фармакологии нутрициолгии», врач высшей категории.

Турбеева Елизавета Андреевна — редактор страницы.

Книга: «Детская нефрология» (Игнатов М. С., Вельтищев Ю. Е.)

Анатомическое и гистологическое строение почек ярко отражает основную и высокоспециализированную функцию этого органа. Почки своеобразны по форме. Масса их по отношению к массе тела почти постоянна и составляет приблизительно V200 - У250 часть.

У взрослых масса каждого из указанных органов около 120 -150 г, левая почка чуть меньше правой. Почки расположены вблизи аорты и интенсивно снабжаются кровью.

В каждой почке различают наружное (корковое) и внутреннее (мозговое) вещество. Участки мозгового вещества почки, имеющие конусообразный вид, называются почечными пирамидами. В одной почке чаще всего наблюдается от 8 до 16 пирамид.

Структурно-функциональной единицей почечной ткани является нефрон. Он имеет почечное тельце со сложно построенным сосудистым клубочком (гломерулой), систему извитых и прямых канальцев, кровеносные и лимфатические сосуды, нейрогуморальные элементы. Общее число нефронов в обеих почках составляет около 2 ООО ООО.

Размеры нефронов и их почечных клубочков увеличиваются с возрастом: у годовалых детей средний диаметр клубочка около 100 мкм, у взрослого - около 200 мкм.

Различают несколько видов нефронов в зависимости от локализации. Основными из них являются поверхностные (корковые), среднекортикальные и околомозговые (юкстамедуллярные) нефроны.

Петля нефрона (Генле) длиннее у тех элементов, которые расположены ближе к мозговому веществу (рис. 7). При исследовании почек млекопитающих определено, что чем больше у животного нефронов с длинной петлей, тем более высока концентрационная способность его почечной ткани [Наточин Ю. В., 1982].

Юкстамедуллярные нефроны составляют Vi0- V15 часть от общего числа нефронов. Выносящая артериола юкстамедуллярных нефронов по выходе из клубочка дает ветви в мозговое вещество, где каждая артериола разделяется на несколько параллельных нисходящих прямых сосудов, которые идут в направлении почечного сосочка и после деления на капилляры, уже в виде вен, возвращаются обратно в корковую часть, заканчиваясь в междольковых или дуговых венах.

Юкстамедуллярные нефроны вследствие особого строения рассматриваются как элементы почки, имеющие особые функциональные задачи: они обеспечивают в почке процесс противоточного обмена.

Корковое вещество почек. Почечное тельце. Данный элемент нефрона образован клубочком, заключенным в капсулу; он тесно связан с прилежащим ЮГК. Клубочек почечного тельца (гломерула) состоит из группы переплетенных капилляров, берущих начало от приносящей артериолы и впадающих в выносящую артериолу. Оба сосуда расположены на одном полюсе клубочка.

Тем самым между приносящей и выносящей артериолами образуется особая капиллярная сеть, лежащая необычно - не между артериолами и венулами, а внутри артериальной системы; ее называют «чудесной сетью».

Выносящая артериола делится на более мелкие веточки и на обычные капилляры только в зоне канальцев нефрона. В итоге венозная система почки начинается не от капилляров клубочка, а от капилляров, оплетающих почечные канальцы. В приносящей артериоле перед клубочком существует гидростатическое давление крови около 9,33 кПа, обеспечивающее клубочковую фильтрацию.

Современные сведения о деталях структуры почечного тельца, его клубочка и отдельных капилляров основаны главным образом на данных ЭМ.

Стенка капилляра клубочка состоит из эндотелия, БМ и подоцитов (эпителиальных клеток), наружная поверхность которых обращена в полость клубочковой капсулы (рис. 8).

Гломерулярная базальная мембрана (ГБМ) капилляров имеет у взрослых толщину около 350 нм. У детей она составляет в норме от 200 до 280 нм, при врожденной и наследственной почечной патологии часто не достигает более Уз своей нормальной толщины, бывает меньше 100 нм, а также может значительно превышать норму. Она состоит из среднего, электронно-оптически плотного слоя (lamina densa) и двух светлых слоев (lamina гага) по обе стороны от среднего.

Гломерулярная фильтрация макромолекул зависит от их размеров, конфигурации и заряда. Они взаимодействуют с расположенными в определенной последовательности надклеточными слоями гломерулярных полианионов (отрицательно заряженных гепарансульфатпротеогликанов) и с сетью коллагеновых элементов IV типа, локализованных в ГБМ [Дайхин Е. И., 1985; Schurer J. А., 1980; Langer К., 1985].

Анионные отрицательно заряженные участки, имеющиеся в краевых слоях ГБМ, выявляются при ЭМ с помощью полиэтиленимина; они повреждаются и исчезают при гломерулопатиях или их экспериментальных моделях .

Подоциты имеют множество мелких отростков - педикул (цитоподий), которыми эти клетки связаны с ГБМ (рис. 9). В области педикул, щелевых межнедикулярных мембран и на свободной поверхности подоцитов обнаруживается слой гликокаликса - углеводсодержащего биополимера, в состав которого входит нейраминовая (сиаловая) кислота; носителем этой кислоты служит белок (сиалопротеин или подокаликсин), который биохимически эквивалентен полианионам ГБМ [Кеjaschki D., 1985].

При гломерулярной патологии уровень подокаликсина падает, он изменяется ультраструктурно, утрачивает характерные свойства.

Эндотелиоциты клубочковых капилляров на значительном протяжении сосудистой стенки представлены тонким слоем цитоплазмы, имеющей поры, благодаря которым плазма крови полнее контактирует с веществом БМ гломерул. Плоские слои пористой цитоплазмы окончатого эндотелиоцита переходят в более массивную околоядерную ее часть.

Согласно иммуногистохимическим исследованиям, протеин, идентичный подокаликсину, имеется почти во всех клетках эндотелия организма. Существование этих поверхностных биополимерных слоев, вероятно, связано с обеспечением беспрепятственного движения биологических жидкостей по каналам различных органов и систем.

В той внутренней части капиллярной стенки, которая чаще всего обращена в сторону сосудистого полюса клубочка и не содержит БМ, под эндотелием находится мезангий. Мезангиоциты полифункциональны. Они проявляют свойства перицитов, фибробластов, клеток, близких макрофагам, гладкомышечным и клеткам ЮГК.

Методом культуры клеток гломерул выделяют клетки эпителия, сократительного мезангия, эндотелия, мезангия костно-мозгового происхождения; определены места синтеза компонентов БМ, получены данные о ретракции мезангиоцитов и подоцитов под действием ангиотензина II на их рецепторы .

Юкстагломерулярный комплекс. В стенке приносящей артериолы непосредственно возле клубочка имеются особые клетки с гранулами (юкстагломерулярные клетки, клетки I типа). Эти клетки вместе со скоплением клеток плотного пятна (клеток III типа), создающим уплотнение (macula densa) в прилежащем дистальном канальце, и клетками юкставаскулярного островка (клетками II типа), расположенными между приносящей артериолой, выносящей артериолой и темным пятном, образуют ЮГК.

Он обладает секреторной способностью, содержит ренин. Экспериментальные исследования показывают, что ЮГК влияет на уровень кровяного давления и на химический состав ультрафильтрата в нефроне.

Функциональные взаимосвязи элементов гломерулярной структуры поддерживаются системой мелких отверстий и каналов, существующих совместно со слоями полианионов.

Канальцы почечного коркового вещества. Канальцы нефрона весьма неоднородны по структуре и функции. Эпителиальные клетки проксимальной части канальца нефрона имеют щеточную каемку, состоящую из множества микроворсинок, в цитоплазме определяется значительное количество удлиненных митохондрий.

При остро протекающем гломерулонефрите на клетках обнаружены ворсинки, подобные двигательным ресничкам респираторного эпителия .

Дистальная часть канальца тесно связана с ЮГК. Эпителий дистальных канальцев в некоторой степени сходен с эпителием проксимальной части, он также представлен крупными клетками.

Однако на поверхности данных клеток имеются лишь немногочисленные микроворсинки, митохондрии обильнее, но меньше по размерам, мембрана цитоплазмы на базальной поверхности имеет меньше складок, что свидетельствует об иной функциональной способности эпителия дистального канальца по сравнению с проксимальным, в частности о секреторной активности.

Дистальные канальцы без резкой границы переходят в собирательные трубочки (канальцы) коркового вещества почки. В этом веществе преобладают дуговые трубочки, содержащие клетки двух типов - прозрачные и плотные. Прозрачные клетки кубовидны, у них крупное ядро, немного митохондрий.

Основная функция этих клеток - отграничение от окружающей среды содержимого, находящегося в просвете трубочки и выводимого в почечную лоханку. Плотные клетки содержат много мелких митохондрий и гранулы рибонуклеопротеидов, что указывает на осуществление в них энзиматических процессов.

При переходе собирательной трубочки в мозговое вещество темные клетки становятся единичными и исчезают, трубочка приобретает прямолинейность и впадает в сосочковый проток.

Мозговое вещество почек. Почечное мозговое вещество содержит прямые канальцы и петли нефрона, собирательные трубочки, нисходящие и восходящие прямые сосуды, интерстициальную ткань.

Петля нефрона (канальцы Генле) подразделяется на сравнительно тонкостенные нисходящие ветви, включая колено петли, в котором направление канальца меняется на противоположное, и толстостенные восходящие. Эпителиальные клетки тонкой, нисходящей, части петли имеют малый объем цитоплазмы, небольшие и малочисленные митохондрии, низкое число эндоплазматических мембранных ячеек.

Клетки уплощенные, светлые. Данная структура соответствует ограниченному числу и низкой активности ферментов в данной гипоксической зоне почечной ткани. Цитоплазма содержит щели, идущие через тело клетки до БМ. Эта область нефрона чрезвычайно легко пропускает воду, и в этом, вероятно, состоит главная особенность данного отдела.

Толстая, восходящая, часть петли нефрона располагается в наружной части мозгового вещества. Здесь в эпителии отмечается базальная складчатость цитомембраны, присущая клеткам смежного дистального отдела нефрона; имеются также удлиненные, сравнительно большие и весьма многочисленные митохондрии; апикальная часть клеток сильно вакуолизирована.

Подобная ультраструктура эпителия соответствует способности клетки к активному транспорту электролитов. Важно отметить, что у детей по сравнению со взрослыми имеются более короткие петли нефронов.

Эта особенность выражена тем больше, чем младше ребенок; соответственно и регуляция водно-солевого обмена менее гибка у ребенка раннего возраста [Вельтищев Ю. Е. и др., 1983].

Прямые собирательные трубочки мозгового вещества почки имеют кубовидные клетки, которые дистальнее становятся выше, в цитоплазме содержатся гранулы и немногочисленные мелкие митохондрии; элементы эндоплазматической сети развиты слабо. Подобная ультраструктура свидетельствует о низком энергетическом и синтетическом потенциале клеток.

Интерстициальные клетки почечной ткани. В почечном корковом и мозговом веществе между канальцами имеются фибробласты, макрофаги, реже лимфоидные и плазматические клетки. Особые интерстициальные клетки мозгового вещества почек участвуют в работе противоточной системы почек и в процессе концентрирования содержимого канальцев, а также продуцируют простагландины.

Имеются объективные морфофункциональные показатели состояния ренин-ангиотензинной и простагландиновой систем при патологии, в частности при нефрогенной артериальной гипертензии, ее стадии и длительности течения [Серов В. В., Пальцев М. А., 1984].

Сосуды мозгового вещества. Представлены главным образом тонкостенными элементами, имеющими параллельно идущие длинные нисходящую и восходящую части, а также петлю, что сходно с построением канальцев петли нефрона.

Расположение сосудов и канальцев мозгового вещества соответствует существованию в почке противоточного механизма, с помощью которого осуществляется обмен веществ между содержимым прямых канальцев и кровеносных сосудов.

Малая скорость кровотока способствует поддержанию аноксического градиента (разницы), при котором в крови сосудов на вершине почечного сосочка имеется то же количество кислорода, что и в содержимом канальцев.

Другой важный градиент в мозговом веществе почки - осмотический, причем наибольшая концентрация ионов натрия, в основном создающих осмотический градиент, достигается на верхушке почечных сосочков.
Кровеносная система почек. Почки получают кровь по крупной артериальной ветви - почечной артерии, которая отходит от аорты и делится на 2 - 3 элемента, вступающих в почку и разветвляющихся на междолевые артерии.

Междолевые артерии проходят между пирамидами почки,« затем, на границе между корковым и мозговым веществом, они дают начало дуговым артериям; от последних отходят междольковые артерии, углубляющиеся в корковое вещество. Здесь от них ответвляются приносящие клубочковые артериолы, распадающиеся на капилляры почечных клубочков.

Тем самым клубочки снабжаются кровью из сравнительно крупных артериальных ветвей. Сосуды венозной сети расположены почти параллельно артериальным. Кровь из капилляров канальцев собирается в венозном сплетении коркового вещества и последовательно проходит через междольковые, дуговые и междолевые вены, вливающиеся в почечную вену, впадающую в нижнюю полую.

В наружной зоне мозгового вещества почек отводящие артериолы юкстамедуллярных нефронов образуют артериальные, а затем и венозные прямые сосуды, которые, входя в мозговой слой, формируют конусообразные пучки.

Сложная гистоархитектоника мозгового вещества обеспечивает процесс противоточного обмена, являющийся необходимым элементом осмотического концентрирования мочи [Наточин Ю. В., 1982].

Лимфатическая система почек. Лимфатические капилляры отсутствуют внутри почечных клубочков, но своеобразной корзиночкой оплетают почечное тельце и охватывают извитые и прямые канальцы. Из капилляров при их слиянии возникают междольковые лимфатические сосуды.

Далее располагаются снабженные клапанами лимфатические сосуды, которые сопровождают дуговые артерии и вены. Укрупняясь, сосуды идут к воротам почки и впадают в поясничные лимфоузлы. В почке можно выделить две системы лимфатических путей - корковую и сосочковую.

Обе системы соединяются с междольковыми лимфатическими сосудами. При нарушении функции лимфатической системы в строме почки задерживается белок ультрафильтрата плазмы, наступают отек и гипоксия почечной ткани, возникает дистрофия эпителия канальцев.

Иннервация почек — строение почек. Почка снабжается волокнами симпатических нервов, начинающихся от грудного и поясничного отделов пограничного симпатического ствола между 4-м грудным и 4-м поясничным сегментами.

Волокна образуют сплетения сложной структуры, располагаются вокруг почечной артерии; у мест отхождения почечных артерий от аорты находятся верхний и нижний почечные симпатические узлы.

Почечные клубочки и канальцы на всем протяжении оплетены нервными волоконцами различной толщины, много волокон в юкстамедуллярной зоне и в почечных лоханках. Тем не менее денервированная почка сохраняет выделительную и гомеостатическую функции, что свидетельствует о высокой степени внутриорганного саморегулирования почечных функций.

Осипов Юрий Александрович-врач-нефролог высшей категории

Аблаев Эльдар Эльдарович-врач-нефролог высшей категории

Ионичева Екатерина Владимировна-врач-нефролог высшей категории

Глава 1.АНАТОМИЯ И ГИСТОЛОГИЯ ПОЧЕК

Почки представляют собой парный, но функционально единый орган с обшей нейрогуморальной регуляцией. Они расположены на задней стенке брюшной полости с обеих сторон позвоночника на уровне примерно последних двух грудных и двух или трех поясничных позвонков.

Внутреннее строение почки

Правая почка несколько длиннее и уже левой и расположена немного глубже и ниже. Нижние полюсы обеих почек отстоят друг от друга на большее расстояние (11-13 см), чем верхние (7- 9 см),так как почки расположены под небольшим, открытым кни­зу углом к позвоночнику (рис. 1). Почка имеет форму боба с на­ружной выпуклой и внутренней вогнутой поверхностью. Вес пра­вой почки равен в среднем 120-130 г, левой - несколько мень­ше. Паренхима органа покрыта плотной фиброзной капсулой (tunica fibrosa), которая состоит из двух слоев: наружного соедини­тельнотканного с густой сетью эластических волокон и внутрен­него, состоящего из гладких мышечных волокон и клеточных элементов-гистиоцитов. Капсула рыхло соединена с тканью почки и в нормальных условиях легко снимается без повреждения па­ренхимы. Вокруг почек имеется плотная пластинка - почечная фасция, разделяющаяся на два листка - задний и передний. Почка лежит между этими листками среди жировой клетчатки (capsula adiposa), пронизанной волокнами соединительной ткани, идущими от фиброзной капсулы.

Анатомия и гистология почек. Фиксирующий аппарат

Левая почка укреплена почечной фасцией прочнее, чем правая. Кроме того, левая почка прикрыта ободочной кишкой на большем протяжении, чем правая, а левая надпочечная вена впадает непо­средственно в левую почечную вену. Все это способствует тому, что левая почка прочнее покоится на своем ложе и значительно реже подвергается опушению, чем правая.

Впрочем, по данным Волкова и Делицина, почки удерживают­ся на месте, главным образом, благодаря внутрибрюшному давлению. Вследствие этого факторы, ведущие к уменьшению давле­ния (значительное исхудание, ослабление тонуса брюшного пресса и пр.), способствуют опущению почек. Сосудистая ножка почки может растягиваться, а почечная фасция, окружающая жировую капсулу, открыта книзу и, естественно, не может удержать почку, имеющую наклонность к опущению (Стражеско). Положение по­чек в некоторой степени зависит от высоты стояния диафрагмы.

При дыхательных экскурсиях диафрагмы почки опускаются и под­нимаются, совершая движение в пределах 2-3 см.

Анатомия и гистология почек. Пальпация почки

Пальпация нормальной почки почти невозможна из-за покры­вающих ее брюшного пресса и кишечника и вследствие глубокого ее положения. Прощупывание почки становится более возмож­ным при изменении ее положения при увеличении ее в объеме (опухоль, гидронефроз, кистозное перерождение). Пальпирование должно производиться как в лежачем, так и в стоячем положении больного.

Определить положение нормальной почки можно рентгеноско­пией или рентгенографией после предварительного введения кон­трастного вещества («сергоэин») в почечную лоханку или внутри­венно (ретроградная или интравенозная пиелография). При этом методе исследования нормальная почка выступает в виде нежной овальной тени, расположенной сбоку от позвоночника между XI грудным и III поясничным позвонками, с особенно ясно очерчен­ной лоханкой (рис. 2 и 3).

Анатомия и гистология почек. Разрез почки

На разрезе рисунок почки весьма характерен. Невооруженный глаз различает два слоя, отличающиеся друг от друга по струк­туре и окраске (рис. 4). Ближе к фиброзной капсуле лежит так называемый корковый слой почки шириной в 7-8 мм. При внима­тельном рассматривании можно различить в нем разбросанные многочисленные красные точки - так называемые мальпигиевы тельца почек. Корковый слой радиально исчерчен светлыми полосами (processus medulares), идущими от второго, более глубоко­го слоя почки, мозгового. В свою очередь, и корковый слой прони­кает довольно глубоко в мозговой, образуя так называемые Бертиниевы столбики (cotumnae renales). Мозговой слой почки со­стоит из конусовидных образований - мальпигиевых пирамид, которых в каждой почке человека имеется от 10 до 15. Своим вы­пуклым и зазубренным основанием эти пирамиды обращены к корковому слою, располагаясь между отдельными столбиками его. Вершины пирамид, обращенные к синусам почки, заканчиваются заостренными сосочками, окруженными мочевыми чашечками (callces minores). Через мелкие отверстия, имеющиеся на верхуш­ке пирамид, моча по мере образования стекает и чашечки.

Гистологическое строение почки человека чрезвычайно сложно. Она состоит из большого количества одинаковых структур функционирующих элементов - нефронов. Число нефронов в каждой почке превышает 1 млн. Каждый нефрон состоит из мальпигиева тельца и связанного с ним канальца. Мальпигиевы тельца, расположенные в корковом слое, состоят из тонкого и сложного сосудистого образования - клубочка (glomerulus) и окутывающей оболочки - капсулы.

Анатомия и гистология почек. Боуменова капсула

В зарубежной литературе (а до недавнего времени и у нас)эта капсула именуется боуменовой, по имени английского анато­ма Вильяма Боумена (1816-1892), который описал ее в своей работе «О строении и роли мальпигиевых телец в почке», вышед­шей в Лондоне в 1842 г.

Однако, как на это указал уже давно (1864) профессор Киев­ского университета Н. А. Тржоска-Хржонщевский, эту капсулу впервые описал русский исследователь Александр Михайлович Шумлянский (1748-1795). К сожалению, это указание Хржон- щевского не привлекло достаточного внимания, хотя было опубли­ковано в весьма распространенном «Вирхорском Архиве» (т. 31). Только значительно позже (1949) Е. Олейник на страницах «Ме­дицинского работника» (№ 846) и, особенно, С. Л. Соболь в сво­ей прекрасной книге об истории микроскопа, в России 1 вновь об­ратили внимание на работы А. М. Шумлянского, который впер­вые выяснил истинную природу «мальпигиева тельца» и его вза­имоотношения с почечными канальцами и описал свои исследо­вания в докторской диссертации «О строении почек», изданной на латинском языке в 1782 г. (Перевод второй части диссертации А. М. Шумлянского приводится в книге С. Л. Соболя).

Для своих исследований Шумлянский применил очень тонкую и оригиналь­ную инъекционную методику, наполняя кровеносные сосуды и мочевые канальцы почки окрашенным спиртовым раствором смолы и водным раствором гуммигута под колоколом воздушного насоса. Он разрежал под колоколом воздух и вводил инъицируемую жидкость в почки через лоханку или мочеточник, а затем под­вергал дольки почек микроскопическому исследованию. Этим методом Шумлян­ский доказал, что «мальпигиевы тельца» вовсе не железы, как думали многие исследователи, в том числе и сам Мальпиги, а сложные сплетения артериальных капилляров - «сосудистые клубочки». Последние, по его данным, окружены «некоторыми кольцевидными границами, охватывающими закругленные малень­кие сосуды». А. М. Шумлянский впервые указал также и иа то, что «змеевид­ные» (извитые) мочевые канальцы и прямые мочевые канальцы не «вставлены» друг в друга, а представляют одно непрерывное целое, единый «проток», который на всем своем протяжении сохраняет одинаковый диаметр.

Анатомия и гистология почек. Стенка капсулы

Стенка капсулы состоит из двух листков-.висцерального » париетального. Висцеральный листок капсулы представляет собой очень нежную мембрану толщиной примерно % 1 микрон. Эта мем­брана состоит из плоских кладок, одевает каждую капиллярную петлю клубочка и непосредственно соединяется со стенкой капил­ляра.

В том месте, в котором входит в почечный клубочек приво­дящий сосуд (vas afferens) и выходит отводящий (vas efferens), висцеральный листок капсулы переходит в париетальный, состоящий из однослойного плоского эпителия и шаровидно окружаю­щий клубочек. Между обоими листками капсулы образуется ще­левидная полоость, в которой свободно висят капиллярные петли клубочка (рис. 6). Жидкость, фильтрующаяся из капилляров клу­бочка, поступает в полость капсулы. Клубочек почки взрослого человека имеет в диаметре 0,2 мм. Фильтрующая мембрана клубочка состоит из почти лишенного ядер эндотелия капилляров без четких клеточных границ, из тонкого висцерального слоя капсулы я находящейся между ними основной мембраны, представ­ляющей собой тончайшую пластинку соединительной ткан». Боль­шинство исследователей считает, что эти три слоя непрерывны. Существует, однако, мнение, что висцеральный эпителий состоит из прерывистого ряда плоских звездчатых клеток, между которыми стенка капилляра проникает непосредственно в полость капсулы Общая фильтрующая поверхность капиллярных петель всех сосу­дисты х клубочков обеих почек чрезвычайно велика и достигает 1,5 ж 2 , т. е. примерно равна поверхности тела взрослого человека <1,5-1,75 ж 2).

Анатомия и гистология почек. Листки капсулы

Наружный листок клубочковой капсулы без резкой границы переходит в канальцевую часть нефрона. а именно в так называ­емый главный отдел мочевогб канальца, состоящий из и з s и- той и прямой частей (рис. 7). Извитая часть мочевого ка­нальца, начинаясь непосредственно у полюса капсулы, противо­положного сосудистому, поворачивает кверху, образуя несколько завитков (извитые канальцы первого порядка), вновь возвращается по направлению к мальпигиеву клубочку, выпрямляется к пере­ходит в прямую часть главного отдела, опускающуюся к мозго­вому слою почки. Прямая часть главного отдела переходят а так называемую петлю Шумлянского - Гекле, состоящую из двух колен: нисходящего (тонкого) и восходящего (толстого). Петли эти бывают разной длины. Переход тонкой части петли в толстую не всегда происходит непосредственно на перегибе нисхо­дящего колена к восходящему.

В коротких петлях он происходит уже в нисходящем колене» а в длинных-только в восходящем. Большая часть петель Шу мл я некого располагается в мозговом слое почки, отдельные короткие петли полностью находятся в корковом слое. Восходящее колено петля вновь близко подходит к клубочку я переходит там в извитой вставочный отдел (извитые ка­нальцы второго порядка). Вставочный отдел местами переплетает­ся с извитой частью главного отдела и переходит в соедини­тельный (связующий) отдел; последний переходит в систему прямых собирательных трубок, веерообразно направляющих­ся к сосочкам мальпигиевых пирамид в мозговом слое почек (см. выше)»

Анатомия и гистология почек. Главный отдел мочевого канальца

Главный отдел мочевого канальца является одной из наи­более важных функциональных частей почки. Его узкий просвет выстлан толстым эпителием, клетки которого имеют неотчетливые извилистые границы. Самыми характерными чертами строения главного отдела являются обращенная в просвет его так иазывае- мая щетковидная каемка и исчерченность протоплазмы, особенно в базальном отделе. Щетковндная каемка состоит из нежных нитей, покрывающих свободную поверхность клеток (рис. 8), а базальная исчерченность идет перпендикулярно основной мембране, покры­вающей каналец снаружи. Эта исчерченность зависит, поводимому, от особого расположения хондриозом н промежутков между ними и от особенностей структуры протоплазмы. Вследствие указанного главные отделы мочевых канальцев очень напоминают слютше трубки выводных протоком слюнных желез (Заварзин).

Русский гистолог С. Лебедев еще в 1883 г., допуская наличие канальцевой секреции в почках, высказал предположение о воз­можной роли в этом процессе указанной тонкой структуры глав­ного отдела канальцев (щетковндной каймы), что позже (1928- 1936) было косвенно подтверждено (Маршалл, Смит и др.) наблю­дениями над секреторной функцией агломерулярных почек у рыб.

Анатомия и гистология почек. Базальная исчерченность

Щетковидная каемка базальная исчерченность особенно хо­рошо выражены в извитой части главного отдела. По мере удале­ния от клубочков, а особенно при переходе к нисходящему колену петли Шумлянского, эти структурные особенности канальцев ста­новятся менее ясными.

Тонкое колено петли имеет очень широкий просвет я выстлано плоским полигональным эпителием, клетки которого бывают ино­гда столь незначительной величины, что ядра их вдаются в про­свет, при микроскопическом исследовании имитируя кровеносные капилляры.

Начальная часть толстого колена состоит из так называемых мутных участков. Эпителий этих участков напоминает жителя! главных отделов, однако имеет менее выраженную базальную исчерченность и совершенно лишен щетковидной каемки. Светлые участки толстых восходящих частей петли выстланы эпителием с более прозрачной и менее зернистой протоплазмой. Вставочные отделы мочевых канальцев имеют неправильные очертания, обра­зуют выпячивания и сужения. Эпителий, выстилающий их, похож на эпителий светлой части восходящих качен.

Соединительные отделы выстланы кубическим эпителием, полигональные клетки которого обладают светлой протоплазмой. В собирательных труб­ках высота выстилающего их эпителия увеличивается с увели­чением калибра трубок: в тонких трубках низки цилиндри­ческий, а в более толстых переходит в высокий цилиндрический, которым выстланы и сосочковые протоки. Эпителий сосочковых протоков переходит в двурядный эпителий почечных чаш, в последний - в переходный эпителий почечной лоханки и моче­точника.

Длина одного выпрямленного мочевого канальца от капсулы до первой собирательной трубки равна приблизительно 40-50 лш» общая длина всех мочевых канальцев обеих почек достигает oгромной величины - примерно 100 км, с общей поверхностью около 6 квадратных метров.

Кровообращение в почках совершается весьма энергично, количественно превосходя почти в 20 раз кровообращение большинства других органов. Почечная артерия (a.~Tenalfgy, короткая ветвь брюшной аорты, войдя в почку, распадается на несколько крупных ветвей, идущих между сосочками пирамид в паренхиму почек,- междолевые или конечные (Заварзин) артерии (a. a. interlobares s. terminales). У границы коркового и мозгового слоев они образуют разветвления, лежащие приблизительно на границе между обоими почечными слоями и носящие название ду­говых артерий (a. a. arciformes s. arcuatae).

От дуговых артерий радиально к поверхности почек отходят многочисленные веточки - междольковые артерии (a. a. interlobulares). Они уходят в кору на различную глубину и разветвляются на большое количество’ боковых нежных веточек, диаметром около 50 микрон, каждая из которых направляется к одному мальпигиеву клубочку (рис. 6), составляя его так называемую приносящую или приводящую артерию (vas afferens). Войдя в капсулу, приводящая артерийка распадается на несколько (чаще всего - 4) веточек, сразу же рас­сыпающихся примерно на 50 капиллярных петель, составляющих сосудистый клубочек (glomerulus) почечного тельца.

Эти капил­лярные петли очень извилисты, не имеют между собой анастомозов и, сливаясь, образуют маленькую артерийку - выводящий сосуд (vas efferens), которая покидает клубочек вблизи входа приводя­щей артерии. Сосудистый клубочек почки составляет «чудесную сеть» (rete mirabilis): капилляры расположены здесь между двумя артериями. Как уже указывалось, эти капилляры отличаются тем, что их эндотелий не обнаруживает четких клеточных границ и что стенка их срастается с синцитиальным внутренним листком оку­тывающей клубочек капсулы, что хорошо описано Типцевым из гистологической лаборатории проф. Н. К. Кульчицкого в Харь­ковском университете (1897).

Короткая отводящая артерия по выходе из клубочка распа­дается на настоящую капиллярную сеть, оплетающую канальцы коркового вещества и, как правило, снабжающую кровью только канальцы «своего» нефрона. Между капиллярами различных ка­нальцев лишь очень редко имеются анастомозы. Концевые части междольковых артерий, расположенные у поверхности почки, рас­сыпаются в капиллярные сосуды, не образуя приводящих артерий. Отводящие артериолы части клубочков, особенно тех, которые расположены глубоко в корковой части или в пограничной зоне, по выходе из клубочка не распадаются на капиллярную сеть, а опускаются в виде прямых артериол в мозговую часть и образуют капиллярную сеть вокруг петель и собирательных канальцев.

Анатомия и гистология почек. Капилляры

Анатомия и гистология почек. Почечный круг кровообращения

Почечный круг кровообращения является самым коротким пос­ле коронарного.Как уже указывалось, кровообращение в почках человека со­вершается весьма энергично.

Симпатические нервы почки идут в составе боль­шого и малого чревных нервов (п. n. splanchnici majorct minor), а также от отдельных ганглиев пограничного симпатического ствола. Они берут начало в грудных и поясничных сегментах огромной величины - примерно 100 км, с общей поверхностью около 6 квадратных метров.

Анатомия и гистология почек. Кровообращение в почках

Кровообращение в почках совершается весьма энергично и. количественно превосходя почти в 20 раз кровообраще­ние большинства других органов. Почечная артерия (a. renaTfS’f, короткая ветвь брюшной аорты, войдя в почку, распадается на несколько крупных ветвей, идущих между сосочками пирамид в паренхиму почек,- междолевые или конечные (Заварзин) артерии (a. a. interlobares s. terminales). У границы коркового и мозгового слоев они образуют разветвления, лежащие приблизительно на границе между обоими почечными слоями и носящие название дуговых артерий (a. a. arciformes s. arcuatae).

От дуговых артерий 1 радиально к поверхности почек отходят многочисленные веточки -4 междольковые артерии (a. a. interlobulares). Они уходят в кору на различную глубину и разветвляются на большое количество боковых нежных веточек, диаметром около 50 микрон, каждая из — которых направляется к одному мальпигиеву клубочку (рис. 6)| составляя его так называемую приносящую или приводящую ар- | терийку (vas afferens). Войдя в капсулу, приводящая артерийка и распадается на несколько (чаще всего - 4) веточек, сразу же рас­сыпающихся примерно на 50 капиллярных петель, составляющих сосудистый клубочек (glomerulus) почечного тельца.

Эти капил­лярные петли очень извилисты, не имеют между собой анастомозов и, сливаясь, образуют маленькую артерию - выводящий сосуд (vas eiferens), которая покидает клубочек вблизи входа приводя­щей артерии. Сосудистый клубочек почки составляет «чудесную сеть» (rete mirabilis): капилляры расположены здесь между двумя артериями. Как уже указывалось, эти капилляры отличаются тем, что их эндотелий не обнаруживает четких клеточных границ и что стенка их срастается с синцитиальным внутренним листком оку­тывающей клубочек капсулы, что хорошо описано Типцевым из гистологической лаборатории проф. Н. К. Кульчицкого в Харь­ковском университете (1897).

Анатомия и гистология почек. Отводящий сосуд

Диаметр отводящего сосуда равен половине диаметра приводящей артериолы, сечение отводящего сосуда равно только четверти сечения приводящего. Оба они име­ют выраженную мышечную стенку. В капиллярах сосудистого клу­бочка создаются, таким образом, условия для повышенного внутрикапиллярного давления, которое может быть еще усилено со­кращением мышечной оболочки отводящего сосуда. Следует также добавить, что стенка капилляров, сросшаяся с тонкой висцеральной стенкой капсулы, состоящей, как уже указывалось, из звездчатых клеток, представляет очень незначительное препятствие для про­хождения через нее фильтрующейся жидкости.

Короткая отводящая артерия по выходе из клубочка распа­дается на настоящую капиллярную сеть, оплетающую канальцы коркового вещества и, как правило, снабжающую кровью только лишь «своего» нефрона. Между капиллярами различных ка­лишь очень редко имеются анастомозы. Концевые части междольковых артерий, расположенные у поверхности почки, рассыпаются в капиллярные сосуды, не образуя приводящих артерий. Отводящие артериолы части клубочков, особенно тех, которые расположены глубоко в корковой части или в пограничной зоне, по выходе из клубочка не распадаются на капиллярную сеть, а опускаются в виде прямых артериол в мозговую часть и образуют капиллярную сеть вокруг петель и собирательных канальцев. Существуют указания на то, что часть артериальных веточек почек переходит прямо в вены без промежуточной капиллярной сети и, таким образом, кровоснабжение может совершаться, минуя сосу­дистую сеть клубочка.

Анатомия и гистология почек. Внеклубочковые сосуды

Допускают, что от некоторых приводящих артериол отходят сосудики, которые соединяются с капиллярной сетью канальца в обход клубочка (рис. 9), и, следовательно, в этих нефронах кро­вообращение в канальцах может продолжаться и при гибели всех или части капилляров клубочка. Вопрос о существовании таких внеклубочковых сосудов является, правда, спорным, и некоторые исследователи отрицают их наличие. Совершенно очевидно, однако, что продолжающаяся иногда функция канальцев нефрона при пол­ном выключении кровоснабжения клубочка делает существование внеклубочковых сосудов вероятным, по крайней мере в отдельных случаях. Все же роль их в кровоснабжении почек очень невелика.

Из капилляров коркового вещества собираются вены. У поверх­ности почки образуются звездчатые вены (v. v. stellatae), которые продолжаются в междольковые, дуговые и междолевые (конеч­ные) вены, сливающиеся в почечную вену. Из капилляров мозгово­го слоя возникают вены, впадающие в дуговые.

Почечный круг кровообращения является самым коротким пос­ле коронарного.Как уже указывалось, кровообращение в почках человека со­вершается весьма энергично. Буяльский (цит. по Тарееву) еще в 1817 г. отметил, что «никакой орган, соразмерно со своей объятностью не получает столько крови, как почки».

В одну минуту через почки протекает около 1 л крови, что со­ставляет около 1 500 л за сутки. Вся масса циркулирующей крови проходит через почки в течение 8-10 минут. Это стоит в тесной связи с процессами освобождения крови от продуктов клеточного обмена, являющимися одной из основных функций почек.

Анатомия и гистология почек. Лимфатические сосуды

Лимфатические сосуды имеются как в паренхиме почек, так и в фиброзной оболочке и жировой капсуле. Густая сеть лимфати­ческих капилляров оплетает канальцы и собирается в лимфати­ческие сосуды, идущие параллельно дуговым сосудам к воротам почки и впадающие в лимфатические узлы поясничной области.

Симпатические нервы почки идут в составе боль­шого и малого чревных нервов (л. n. splanchnici majoret minor), а также от отдельных ганглиев пограничного симпатического ствола. Они берут начало в грудных и поясничных сегментахспинного мозга De до La, особенно же от Dio до D t 2 . Прерываясь в ganglion coeliacum, симпатические нервы почек вступают в по­чечное сплетение, находящееся в клетчатке между большими со­судами почек и надпочечниками. Парасимпатические нервы почек отходят от ствола блуждающего нерва. От почечного сплетения ветви этих нервов сопровождают почечные сосуды до мельчай­ших капилляров. Пучок нежных нервных волоконцев образует густую сеть на почечной артерии и вместе с ней вступает в почку 1 ее воротах. Другой пучок волоконцев идет вдоль мочеточника и вступает в паренхиму почки через лоханку.

Как доказал еще в 1901 г. В. Смирнов, широкая иннервацион- ная сеть обеспечивает не только всю сосудистую систему почек, вплоть до приводящих и отводящих артериол клубочков, но и, про­низывая почечную паренхиму, проникает через основную мембрану почечных канальцев непосредственно к выстилающим их эпители­альным клеткам. Вокруг этих последних образуются структуры, ко­торые напоминают секреторные нервные образования в пищева­рительной системе. Это дало Смирнову основание полагать, что в почечной паренхиме имеются не только чувствительные, но и секреторные нервные волокна.

Все эти данные с несомненностью говорят о большом значении нервной системы в регуляций процессов мочеобразования, хотя в свое время эти факты привлекли к себе недостаточное внимание исследователей.

Редактор страницы: Кутенко Владимир Сеергеевич

Уважаемые пациенты, Мы предоставляем возможность записаться напрямую на прием к доктору, к которому вы хотите попасть на консультацию. Позвоните по номеру,указанному вверху сайта, вы получите ответы на все вопросы. Предварительно, рекомендуем Вам изучить раздел О Нас .

Как записаться на консультацию врача?

1) Позвонить по номеру 8-863-322-03-16 .

2) Вам ответит дежурный врач.

3) Расскажите о том, что вас беспокоит. Будьте готовы, что доктор попросит Вас рассказать максимально подробно о своих жалобах с целью определения специалиста, требующегося для консультации. Под руками держите все имеющиеся анализы, особенно, недавно сделанные!

4) Вас свяжут с вашим будущим лечащим доктором (профессором, доктором, кандидатом медицинских наук). Далее, непосредственно с ним вы будете обговаривать место и дату консультации — с тем человеком, кто и будет Вас лечить.

Редактор страницы-Кутенко Владимир Сергеевич

Мочевыделительная система содержит почки и мочевыводящие пути. Основная функция - выделительная, а также участвует в регуляции водно-солевого обмена.

Хорошо развита эндокринная функция, регулирует локальное истинное кровообращение и эритропоэз. И в эволюции, и в эмбриогенезе проходит 3 этапа развития.

В начале закладывается предпочка. Из сегментных ножек передних отделов мезодермы образуются канальцы, канальцы проксимальных отделов открываются в целом, дистальные отделы сливаются и образуют мезонефральный проток. Предпочка существует до 2-х суток, не функционирует, рассасываются, но остается мезонефральный проток.

Затем образуется первичная почка. Из сегментных ножек туловищной мезодермы образуются мочевые канальцы, их проксимальные отделы вместе с кровеносными капиллярами образуют почечные тельца - в них образуется моча. Дистальные отделы впадают в мезонефральный проток, который растет в каудальном направлении и открывается в первичную кишку.

На втором месяце эмбриогенеза закладывается вторичная или окончательная почка. Из несегментированного каудального отдела мезодермы образуется нефрогенная ткань, из нее формируются почечные канальцы и проксимальные канальцы участвуют в образовании почечных телец. Дистальные разрастаются, из них образуются канальцы нефрона. Из мочеполового синуса сзади, от мезонефрального протока формируется вырост в направлении вторичной почки, из него развиваются мочевыводящие пути, эпителий - многослойный переходный. Первичная почка и мезонефральный проток участвуют в построении половой системы.

Почка

Снаружи покрыта тонкой соединительнотканной капсулой. В почке выделяют корковое вещество, оно содержит почечные тельца и извитые почечные канальцы, внутри в почке располагается мозговое вещество в виде пирамид. Основание пирамид обращено к корковому веществу, а верхушка пирамид открывается в почечную чашечку. Всего около 12 пирамид.

Пирамиды состоят из прямых канальцев, из нисходящих и восходящих канальцев петель нефрона и собирательных трубочек. Часть прямых канальцев в корковом веществе располагаются группами, и такие образования называются мозговыми лучами.

Структурно-функциональная единица почки - нефрон; в почке преобладают корковые нефроны, их большая часть располагается в корковом веществе и их петли неглубоко проникают в мозговое вещество, оставшиеся 20% юкстамедуллярные нефроны. Их почечные тельца находятся глубоко в корковом веществе на границе с мозговым. В нефроне выделяют тельце, проксимальный извитой каналец, дистальный извитой каналец.

Проксимальные и дистальные канальцы построены из извитых канальцев.

Строение нефрона

Начинается нефрон почечным телом (Боумена-Шумлянского), оно включает сосудистый клубочек и капсулу клубочка. К почечному тельцу подходит приносящая артериола. Она распадается на капиллярную, которая образуют сосудистый клубочек, кровеносные капилляры сливаются, образуя выносящую артериолу, которая покидает почечное тельце.

Капсула клубочка содержит наружный и внутренний листок. Между ними имеется полость капсулы. Изнутри со стороны полости выстлана эпителиальными клетками - подоцита: крупными отросчатыми клетками, которые с отростками прикрепляются к базальной мембране. Внутренний листок проникает внутрь сосудистого клубочка и окутывает снаружи все кровеносные капилляры. При этом его базальная мембрана сливается с базальной мембраной кровеносных капилляров с образованием одной тс базальной мембраны.

Внутренний листок и стенка кровеносного капилляра образуют почечный барьер (филь состав этого барьера входят: базальная мембрана, она содержит 3 слоя, ее средний слой содержит мелкую сетку фибрилл и подоциты. Барьер в нору пропускает все форменные элементы: крупные молекулярные белки крови (фибрины, глобулины, часть альбоминов, антиген-антитело).

После почечного тельца идет извитой каналец; он представлен толстым канальцем, который несколько раз закручен вокруг почечного тельца, он выстлан однослойным цилиндрическим каемчатым эпителием, с хорошо развитыми органеллами.

Затем идет новая петля нефрона. Дистальный извитой каналец выстлан кубическим эпителием с редкими микроворсинками, несколько раз оборачивается вокруг почечного тельца, далее проходит сосудистым клубочком, между приносящей и выносящей артериоллами, открывается в собирательную трубочку.

Собирательные трубочки - прямые канальцы, выстланы кубическим и цилиндрическим эпителием, в котором выделяют светлые и темные эпителиальные клетки. Собирательные трубочки сливаются, образуются сосочковые каналы, два открываются на вершине пирамид мозгового вещества.

(рис. 57, 58)
Кусочек почки фиксируют смесью Ценкера и отвесные срезы окрашивают гематоксилином и эозином.
Почка окружена плотной соединительнотканной оболочкой, в состав которой входит некоторое количество гладких мышечных клеток, расположенных в глубоких частях оболочки.
При малом увеличении в почке хорошо различается периферическое корковое и лежащее глубже мозговое вещество.
В состав паренхимы почки входят главным образом мочевые канальцы. Корковая часть почки в основном образована извитыми канальцами. На препарате они перерезаны поперек или вкось и имеют вид кругов или овалов. Кроме того, в состав коркового слоя входят мальпигиевы, или почечные, тельца (см. ниже).
В мозговой части расположены прямые канальцы, срезанные главным образом продольно или слегка вкось; на препарате они имеют вид трубок различной длины, лежащих параллельно друг другу. Мозговое вещество образует пирамиды, широкое основание которых обращено к корковому веществу, а
вершина- к почечной лоханке. Граница между корковым и мозговым веществом неровная. Вглубь коркового вещества вдаются тяжи мозгового вещества, которые называются мозговыми лучами До поверхности почки мозговые лучи никогда не доходят.
Участки коркового вещества, расположенные между мозговыми пирамидами, называются Бертиньевыми колонками.
Основной структурной единицей почки является иефрон; он состоит из почечного тельца и отходящего от него мочевого канальца, который впадает в выводные протоки, называемые в почке собирательными трубками. При большом увеличении надо изучить все отделы нефрона, отличающиеся друг от друга как по структуре, так и по функции.
Почечные тельца состоят из мальпигиева клубочка и окружающей его капсулы Шумляиского - Боумена. Клубочек образован многочисленными петлями кровеносных капилляров, нигде между собой не анастомози- рующих. Это капилляры «чудесной сети», так как они расположены между двумя артериями: более широкой, приносящей кровь к клубочку, и более узкой - выносящей. Эти артерии редко попадают на срез.
Почечные тельца имеют вид округлых темно окрашенных образований, расположенных по всему корковому веществу за исключением самого наружного его слоя.
Капилляры в клубочке расположены очень тесно, кроме того, они сжимаются при фиксации. Поэтому на препарате видны главным образом ядра на фоне более или менее однородной


массы протоплазмы. Эти ядра принадлежат клеткам эндотелия капилляров, клеткам тонкого слоя промежуточного вещества сопровождающего и скрепляющего капилляры и, наконец, плоским эпителиальным клеткам внутреннего листка капсулы Шум- лянского - Боумена, которые плотно срастаются со стенками капилляров. Иногда удается различить капилляры, наполненные оранжевыми (из-за примененной окраски) эритроцитами. Мальпигиев клубочек лежит внутри капсулы Шумлянского - Боумена, имеющей вид бокала из эпителиальных клеток. В ней различают внутренний листок, срастающийся со стенкой капилляров и поэтому плохо различимый на препарате, и хорошо видный наружный листок, состоящий из слоя плоских эпителиальных клеток, за которым следует тонкий слой соединительной ткани.
Между внутренним и наружным листками находится щеле- вндная полость, куда из капилляров клубочка фильтруется жидкость, поступающая затем в мочевой каналец, начинающийся от каждого почечного тельца. Стенка мочевых канальцев состоит из однослойного эпителия, являющегося продолжением эпителия капсулы. Полость мочевого канальца является продолжением полости почечного тельца.
В различных частях мочевого канальца в связи с различной функцией эпителий имеет различное строение. От почечного тельца начинается главный отдел канальца, его извитая часть, расположенная около почечного тельца; она перерезана обычно поперек или вкось, и на препарате видны круги и овалы, выстланные однослойным кубическим или низким призматическим эпителием. Большие клетки его имеют мутную протоплазму, окрашивающуюся в интенсивно розовый цвет, в базальных частях иногда заметна нежная исчерченность, обусловленная присутствием здесь палочковидных митохондрий, расположенных параллельно друг другу. В электронном микроскопе видно, что митохондрии лежат между впячиваниями оболочки базальной части клетки. Часто в верхних частях клетки находятся вакуоли. Ядра клеток круглые, светлые. Границы между клетками плохо выражены. Просвет канальца очень узкий, щелевидный. На поверхности клеток, обращенной в просвет канальца, имеется тонкая кутикулярная щеточная каемка, состоящая из тончайших выростов цитоплазмы. Обычно при фиксации она разрушается и на препаратах почти не видна. За извитой частью главного отдела идет прямая, по структуре ничем от нее не отличающаяся. На препарате она часто срезана вдоль и входит в состав мозгового луча.
Затем следует тонкая нисходящая часть петли Генле, расположенная в мозговом луче. Стенка ее выстлана плоскими клетками, ядра которых выступают в просвет канальца. Широкая восходящая часть петли Генле также проходит в мозговом луче. Она шире нисходящей части по диаметру, выстлана кубическим эпителием с мутной цитоплазмой и хорошо выраженными^ клеточными границами.
Вставочный, а затем связующий отделы мочевого канальца, вновь извитые, расположены около главных отделов в корковом

Рис.. 59. Накопление трипанового синего клетками канальцев главных отделов почки кролика (увеличение ок. 7, иммерсия):
1 - трипаповый синий в клетках канальцев главных отделов, 2 -мальпигиев клубочек, 3 -толстая часть петли Генле, 4 --кровеносный сосуд, 5-клетки соединительной ткани

веществе. На препарате они срезаны таким образом, что образуют круги и овалы. Их трудно отличить от главных отделов.. При внимательном изучении под большим увеличением видно, что цитоплазма клеток окрашивается несколько светлее, чем в»

извитой части главных отделов; границы между клетками выражены более четко, просвет несколько шире и не имеет вида щели. У этих клеток нет ни щеточной каемки, ни палочковидных митохондрий в базальной части.
Мочевые канальцы впадают в собирательные трубки, проходящие в мозговых лучах и направляющиеся в мозговое вещество. По мере удаления от коркового вещества они сливают- ¦ся, и диаметр их увеличивается. Собирательные трубки выстланы однослойным эпителием, высота которого увеличивается по мере увеличения калибра выводного протока. Клетки эпителия собирательных трубок четко отграничены друг от друга, светлая цитоплазма окрашивается совершенно гомогенно.


к содержанию