Курс лекций по общей биохимии. Водно-солевой обмен Нарушение водно солевого обмена биохимия

КУРС ЛЕКЦИЙ

ПО ОБЩЕЙ БИОХИМИИ

Модуль 8. Биохимия водно-солевого обмена и кислотно-основного состояния

Екатеринбург,

ЛЕКЦИЯ № 24

Тема: Водно-солевой и минеральный обмен

Факультеты: лечебно-профилактический, медико-профилактический, педиатрический.

Водно-солевой обмен – обмен воды и основных электролитов организма (Na + ,K + ,Ca 2+ ,Mg 2+ ,Cl - ,HCO 3 - ,H 3 PO 4).

Электролиты – вещества, диссоциирующие в растворе на анионы и катионы. Их измеряют в моль/л.

Неэлектролиты – вещества, недиссоциирующие в растворе (глюкоза, креатинин, мочевина). Их измеряют в г/л.

Минеральный обмен – обмен любых минеральных компонентов, в том числе и тех, которые не влияют на основные параметры жидкой среды в организме.

Вода – основной компонент всех жидкостей организма.

Биологическая роль воды

    Вода является универсальным растворителем для большинства органических (кроме липидов) и неорганических соединений.

    Вода и растворенные в ней вещества создают внутреннюю среду организма.

    Вода обеспечивает транспорт веществ и тепловой энергии по организму.

    Значительная часть химических реакций организма протекает в водной фазе.

    Вода участвует в реакциях гидролиза, гидратации, дегидратации.

    Определяет пространственное строение и свойства гидрофобных и гидрофильных молекул.

    В комплексе с ГАГ вода выполняет структурную функцию.

Общие свойства жидкостей организма

Все жидкости организма характеризуются общими свойствами: объемом, осмотическим давлением и величиной рН.

Объем. У всех наземных животных жидкости составляет около 70% от массы тела.

Распределение воды в организме зависит от возраста, пола, мышечной массы, телосложения и количества жира. Содержание воды в различных тканях распределяется следующим образом: легкие, сердце и почки (80%), скелетная мускулатура и мозг (75%), кожа и печень (70%), кости (20%), жировая ткань (10%). В целом, у худых людей меньше жира и больше воды. У мужчин на воду приходится 60%, у женщин - 50% от массы тела. У пожилых людей больше жира и меньше мышц. В среднем в организме мужчин и женщин старше 60 лет содержится соответственно 50% и 45% воды.

При полном лишении воды смерть наступает через 6-8 дней, когда количество воды в организме снижается на 12%.

Вся жидкость организма разделена на внутриклеточный (67%) и внеклеточный (33%) бассейны.

Внеклеточный бассейн (экстрацеллюлярное пространство) состоит из:

    Внутрисосудистой жидкости;

    Интерстициальной жидкости (межклеточная);

    Трансцеллюлярной жидкости (жидкость плевральной, перикардиальной, перитонеальной полостей и синовиального пространства, цереброспинальная и внутриглазная жидкость, секрет потовых, слюнных и слезных желез, секрет поджелудочной железы, печени, желчного пузыря, ЖКТ и дыхательных путей).

Между бассейнами жидкости интенсивно обмениваются. Перемещение воды из одного сектора в другой происходит при изменении осмотического давления.

Осмотическое давление – это давление, которое создают все растворенные в воде вещества. Осмотическое давление внеклеточной жидкости определяется главным образом концентрациейNaCl.

Внеклеточная и внутриклеточная жидкости значительно отличаются по составу и концентрации отдельных компонентов, но общая суммарная концентрация осмотически активных веществ примерно одинакова.

рН – отрицательный десятичный логарифм концентрации протонов. Величина рН зависит от интенсивности образования в организме кислот и оснований, их нейтрализации буферными системами и удалением из организма с мочой, выдыхаемым воздухом, потом и калом.

В зависимости от особенности обмена, величина рН может заметно отличаться как внутри клеток разных тканей, так и в разных отсеках одной клетки (в цитозоле кислотность нейтральная, в лизосомах и в межмембранном пространстве митохондрий - сильно кислая). В межклеточной жидкости разных органов и тканей и плазме крови величина рН, как и осмотическое давление, относительно постоянная величина.

Вода- важнейшая составная часть живого организма. Организмы без воды существовать не могут. Без воды человек погибает менее чем через неделю, тогда как без пищи, но получая воду он может прожить более месяца. Потеря организмом 20% воды приводит к смерти. В организме содержание воды составляет 2 / 3 от массы тела и изменяется с возрастом. Количество воды в разных тканях различно. Суточная потребность человека в воде примерно составляет 2,5 л. Эта потребность в воде покрывается за счет введения в организм жидкостей и пищевых продуктов. Эту воду считают экзогенной. Воду, которая образуется в результате окислительного распада в организме белков, жиров и углеводов, называют эндогенной.

Вода является средой, в которой протекает большинство реакций обмена. Она принимает непосредственное участие в обмене веществ. Определенная роль принадлежит воде в процессах теплорегуляции организма. С помощью воды происходит доставка тканям и клеткам питательных веществ и удаление из них конечных продуктов обмена.

Выделение воды из организма осуществляется почками - 1,2- 1,5 л, кожей - 0,5 л, легкими - 0,2-0,3 л. Обмен воды регулируется нервно-гормональной системой. Задержке воды в организме способствуют гормоны коры надпочечников (кортизон, альдостерон) и гормон задней доли гипофиза вазопрессин. Гормон щитовидной железы тироксин усиливает выведение воды из организма.
^

ОБМЕН МИНЕРАЛЬНЫХ ВЕЩЕСТВ


Минеральные соли относятся к числу пищевых незаменимых веществ. Минеральные элементы не обладают питательной ценностью, но они нужны организму как вещества, участвующие в регуляции обмена веществ, в поддержании осмотического давления, для обеспечения постоянства рН внутри- и внеклеточной жидкости организма. Многие минеральные элементы являются структурными компонентами ферментов и витаминов.

В состав органов и тканей человека и животных входят макроэлементы и микроэлементы. Последние содержатся в организме в очень незначительных количествах. В различных живых организмах, как и в теле человека, в наибольшем количестве встречаются кислород, углерод, водород, азот. Эти элементы, а также фосфор и сера, входят в состав живых клеток в виде различных соединений. К макроэлементам следует отнести также натрий, калий, кальций, хлор и магний. Из микроэлементов в организме животных обнаружены следующие:медь, марганец, йод, молибден, цинк, фтор, кобальт и др. Железо занимает промежуточное положение между макро- и микроэлементами.

Минеральные вещества в организм поступают только с пищей. Затем через слизистую оболочку кишечника и кровеносные сосуды- в воротную вену и в печень. В печени происходит задержка некоторых минеральных веществ: натрия, железа, фосфора. Железо входит в состав гемоглобина, участвуя в переносе кислорода, а также в состав окислительно-восстановительных ферментов. Кальций входит в состав костной ткани и придает ей прочность. Кроме того, играет важную роль при свертывании крови. Очень для организма фосфор, который встречается кроме свободного (неорганического) в соединениях с белками, жирами и углеводами. Магний регулирует нервно-мышечную возбудимость, активизирует многие ферменты. Кобальт входит в состав витамина В 12 . Йод участвует в образовании гормонов щитовидной железы. Фтор встречается в тканях зубов. Натрий и калий имеют большое значение в поддержании осмотического давления крови.

Обмен минеральных веществ тесно связан с обменом органических веществ (белков, нуклеиновых кислот, углеводов, липидов). Например, ионы кобальта, марганца, магния, железа необходимы для нормального обмена аминокислот. Ионы хлора активируют амилазу. Ионы кальция оказывают активирующее действие на липазу. Окисление жирных кислот идет более энергично в присутствии ионов меди и железа.
^

ГЛАВА 12. ВИТАМИНЫ


Витамины-это низкомолекулярные органические соединения, являющиеся обязательным компонентом пищи. Они не синтезируются в животном организме. Основным источником для организма человека и животных является растительная пища.

Витамины являются биологически активными веществами. Их отсутствие или недостаток в пище сопровождается резким нарушением процессов жизнедеятельности, приводящим к возникновению тяжелых болезней. Необходимость в витаминах обусловлена тем, что многие из них являются составными частями ферментов и коферментов.

По своему химическому строению витамины весьма разнообразны. Их делят на две группы: водорастворимые и жирорастворимые.

^ ВОДОРАСТВОРИМЫЕ ВИТАМИНЫ

1. Витамин B 1 (тиамин, аневрин). Его химическая структура характеризуется наличием аминной группы и атома серы. Наличие спиртовой группы в витамине B 1 дает возможность образовывать с кислотами сложные эфиры. Соединяясь с двумя молекулами фосфорной кислоты, тиамин образует сложный эфир тиаминдифосфат, который является коферментной формой витамина. Тиаминдифосфат является коферментом декарбоксилаз, катализирующих декарбоксилирование -кетокислот. При отсутствии или недостаточном поступлении в организм витамина B 1 становится невозможным осуществление углеводного обмена. Нарушения происходят на стадии утилизации пировиноградной и -кетоглютаровой кислот.

2. Витамин В 2 (рибофлавин). Этот витамин является метилиро-ванным производным изоаллоксазина, связанного с 5-атомным спиртом рибитолом.

В организме рибофлавин в виде сложного эфира с фосфорной кислотой входит в состав простетической группы флавиновых ферментов (ФМН, ФАД), катализирующих процессы биологического окисления, обеспечивая перенос водорода в дыхательной цепи, а также реакции синтеза и распада жирных кислот.

3. Витамин В 3 (пантотеновая кислота). Пантотеновая кислота построена из -аланина и диоксидиметилмасляной кислоты, соединенных пептидной связью. Биологическое значение пантотеновой кислоты состоит в том, что она входит в состав кофермента А, играющего огромную роль в обмене углеводов, жиров и белков.

4. Витамин B 6 (пиридоксин). По химической природе витамин B 6 является производным пиридина. Фосфорилированное произ-водное пиридоксина является коферментом ферментов, катализирующих реакции обмена аминокислот.

5. Витамин B 12 (кобаламин). Химическая структура витамина отличается большой сложностью. В его состав, входит, четыре пиррольных кольца. В центре находится атом кобальта, связанный с азотом пиррольных колец.

Витамину B 12 принадлежит большая роль в переносе метильных групп, а также синтезе нуклеиновых кислот.

6. Витамин РР (никотиновая кислота и ее амид). Никотиновая кислота представляет собой производное пиридина.

Амид никотиновой кислоты является составной частью коферментов НАД+и НАДФ + , входящих в состав дегидрогеназ.

7. Фолиевая кислота (Витамин В с). Выделена из листьев шпината (латинское folium -лист). В состав фолиевой кислоты входит пара-аминобензойная кислота и глютаминовая кислота. Фолиевой кислоте принадлежит важная роль в обмене нуклеиновых кислот и синтезе белка.

8. Пара-аминобензойная кислота. Ей принадлежит большая роль в синтезе фолиевой кислоты.

9. Биотин (витамин Н). Биотин входит в состав фермента, катализирующего процесс карбоксилирования (присоединения CO 2 к углеродной цепи). Биотин необходим для синтеза жирных кислот и пуринов.

10. Витамин С (аскорбиновая кислота). По химической структуре аскорбиновая кислота близка к гексозам. Особенностью этого соединения является его способность к обратимому окислению с образованием дегидроаскорбиновой кислоты. Оба эти соединения обладают витаминной активностью. Аскорбиновая кислота принимает участие в окислительно-восстановительных процессах организма, предохраняет от окисления SH-группы ферментов, обладает способностью обезвоживать токсины.

^ ЖИРОРАСТВОРИМЫЕ ВИТАМИНЫ

К этой группе относятся витамины групп А, Д, Е, К- и др.

1. Витамины группы А. Витамин A 1 (ретинол, антиксерофтальмический) по своей химической природе близок к каротинам. Представляет собой циклический одноатомный спирт.

2. Витамины группы Д (антирахитический витамин). По своей химической структуре витамины группы Д близки к стеринам. Витамин Д 2 образуется из эргостерина дрожжей, а Д 3 - из 7-де-гидрохолестерина в животных тканях под влиянием ультрафиолетового облучения.

3. Витамины группы Е (, , -токоферолы). Основные изменения при авитаминозе Е происходят в половой системе (потеря способности к вынашиванию плода, дегенеративные изменения сперматозоидов). Вместе с этим недостаточность витамина Е вызывает поражение самых разнообразных тканей.

4. Витамины группы К. По своему химическому строению витамины этой группы (K 1 и К 2) относятся к нафтохинонам. Характерным признаком авитаминоза К является возникновение подкожных, внутримышечных и других кровоизлияний и нарушение свертывания крови. Причиной этого является нарушение синтеза белка протромбина-компонента системы свертывания крови.

АНТИВИТАМИНЫ

Антивитамины являются антагонистами витаминов: Часто эти вещества очень близки по структуре к соответствующим витаминам, и тогда в основе их действия лежит «конкурентное» вытеснение антивитамином соответствующего витамина из его комплекса в ферментной системе. В результате образуется «недеятельный» фермент, нарушается обмен и возникает тяжелое заболевание. Например, сульфаниламиды являются антивитаминами парааминобензойной кислоты. Антивитамином витамина B 1 является пиритиамин.

Различают также структуроразличные антивитамины, которые способны связывать витамины, лишая их витаминной активности.
^

ГЛАВА 13. ГОРМОНЫ


Гормоны так же, как и витамины, относятся к биологически активным веществам и являются регуляторами обмена веществ и физиологических функций. Их регулирующая роль сводится к активации или ингибированию ферментных систем, изменению проницаемости биологических мембран и транспорта веществ через них, возбуждению или усилению различных биосинтетических процессов, в том числе и синтеза ферментов.

Гормоны вырабатываются в железах внутренней секреции (эндокринных железах), которые не имеют выводных протоков и свой секрет выделяют непосредственно в кровоток. К числу эндокринных желез относятся щитовидная, паращитовидные (около щитовидные), половые железы, надпочечники, гипофиз, поджелудочная, зобная (вилочковая) железы.

Заболевания, возникающие при нарушении функций той или иной эндокринной железы, являются следствием либо ее гипофункции (пониженной секреции гормона), либо гиперфункции (избыточного выделения гормона).

Гормоны по химической структуре можно разделить на три группы: гормоны белковой природы; гормоны, производные аминокислоты тирозина, и гормоны стероидной структуры.

^ ГОРМОНЫ БЕЛКОВОЙ ПРИРОДЫ

К ним относятся гормоны поджелудочной железы, передней до ли гипофиза и паращитовидных желез.

Гормоны поджелудочной железы-инсулин и глюкагон -участвуют в регуляции углеводного обмена. По своему действию являются антагонистами между собой. Инсулин снижает, а глюкагон увеличивает уровень сахара в крови.

Гормоны гипофиза регулируют деятельность многих других эндокринных желез. К ним относятся:

Соматотропный гормон (СТГ) - гормон роста, стимулирует рост клеток, повышает уровень биосинтетических процессов;

Тиреотропный гормон (ТТГ) -стимулирует деятельность щитовидной железы;

Адренокортикотропный гормон (АКТГ) - регулирует биосинтез кортикостероидов корой надпочечников;

Гонадотропные гормоны -регулируют функцию половых желез.

^ ГОРМОНЫ РЯДА ТИРОЗИНА

К ним относятся гормоны щитовидной железы и гормоны мозгового слоя надпочечников. Основными гормонами щитовидной железы являются тироксин и трийодтиронин. Эти гормоны являются йодированными производными аминокислоты тирозина. При гипофункции щитовидной железы снижаются обменные процессы. Гиперфункция щитовидной железы приводит к повышению основного обмена.

Мозговое вещество надпочечников вырабатывает два гормона-адреналин и норадреналин. Эти вещества повышают кровяное давление. Адреналин оказывает значительное влияние на обмен углеводов -повышает уровень глюкозы в крови.

^ СТЕРОИДНЫЕ ГОРМОНЫ

К этому классу относятся гормоны, вырабатываемые корковым слоем надпочечников и половыми железами (яичниками и семенниками). По химической природе они представляют собой стероиды. Кора надпочечников вырабатывает кортикостероиды, они содержат С 21 -атом. Их делят на минералокортикоиды, из которых наиболее активными являются альдостерон и дезоксикортикостерон. и глюкокортикоиды -кортизол (гидрокортизон), кортизон и кортикостерон. Глюкокортикоиды оказывают большое влияние на обмен углеводов и белков. Минералокортикоиды регулируют в основном обмен воды и минеральных веществ.

Различают мужские (андрогены) и женские (эстрогены) половые гормоны. Первые являются С 19 -, а вторые C 18 -стероидами. К андрогенам относятся тестостерон, андростендион и др., к эстрогенам - эстрадиол, эстрон и эстриол. Наиболее активными является тестостерон и эстрадиол. Половые гормоны обусловливают нормальное половое развитие, формирование вторичных половых признаков, оказывают влияние на обмен веществ.

^ ГЛАВА 14. БИОХИМИЧЕСКИЕ ОСНОВЫ РАЦИОНАЛЬНОГО ПИТАНИЯ

В проблеме питания можно выделить три взаимосвязанных раздела: рациональное питание, лечебное и лечебно-профилактическое. Основой является так называемое рациональное питание, так как оно строится с учетом потребностей здорового человека, в зависимости от возраста, профессии, климатических и др. условий. Основа рационального питания - сбалансированность и правильный режим питания. Рациональное питание является средством нормализации состояния организма и поддержания его высокой трудоспособности.

С пищей в организм человека поступают углеводы, белки, жи­ры, аминокислоты, витамины, минеральные вещества. Потребность в этих веществах различна и определяется физиологическим состоянием организма. Растущий организм нуждается в большем количестве пищи. Человек, занимающийся спортом или физическим трудом, расходует большое количество энергии, а поэтому также нуждается в большем количестве пищи, чем человек малоподвижный.

В питании человека количество белков, жиров и углеводов должно быть в соотношении 1:1:4, т. е. необходимо на 1 г белка.употреблять 1 г жира и 4 г углеводов. Белки должны обеспечивать около 14% калорийности суточного рациона, жиры около 31%, а углеводы около 55%.

На современном этапе развития науки о питании недостаточно исходить только из общего потребления пищевых веществ. Весьма важно установить удельный вес в питании незаменимых компонентов пищи (незаменимых аминокислот, ненасыщенных жирных кислот, витаминов, минеральных веществ и др.). Современное учение о потребностях человека в пище получило выражение в концепции сбалансированного питания. Согласно этой концепции, обеспечение нормальной жизнедеятельности возможно не только при условии снабжения организма адекватным количеством энергии и белка, но и при соблюдении достаточно сложных взаимоотношений между многочисленными незаменимыми факторами питания, способными проявлять в организме максимум своего полезного биологического действия. В основе закона сбалансированного питания лежат представления о количественных и качественных аспектах процессов ассимиляции пищи в организме, т. е. вся сумма обменных энзиматических реакций.

В Институте питания АМН СССР разработаны средние данные о величинах потребности взрослого человека в пищевых веществах. Главным образом, в определении оптимальных соотношений отдельных пищевых веществ именно такое соотношение пищевых веществ необходимо в среднем для поддержания нормальной жизнедеятельности взрослого человека. Поэтому при подготовке общих рационов питания и оценке отдельных продуктов необходимо ориентироваться на данные соотношения. Важно помнить, что вредна не только недостаточность отдельных эссенциальных факторов, но опасен и их избыток. Причина токсичности избытка незаменимых пищевых веществ, вероятно, связана с разбалансированностью рациона питания, которое в свою очередь приводит к нарушению биохимического гомеостаза (постоянства состава и свойств внутренней среды) организма, к нарушению клеточного питания.

Приведенная сбалансированность питания вряд ли может быть перенесена без изменения в структуру питания людей, находящихся в различных условиях труда и быта, людей различного возраста и пола и т. п. Исходя из того, что в основе различий в потребностях в энергии и пищевых веществах лежат особенности протекания обменных процессов и их гормональной и нервной регуляции, необходимо для лиц различного возраста и пола, а также для лиц со значительными отклонениями от средних показателей нормального энзиматического статуса в обычное представление формулы сбалансированного питания внести определенные корректировки.

Институтом питания АМН СССР предложены нормативы для

расчета оптимальных рационов питания населения нашей страны.

Эти рационы дифференцированы относительно трех климатических

зон: северной, центральной и южной. Однако последние научные данные говорят о том, что такое деление сегодня не может удовлетворять. Последние исследования показали, что в пределах нашей страны Север необходимо делить на две зоны: европейский и азиатский. Эти зоны между собой существенно отличаются по климатическим условиям. В институте клинической и экспериментальной медицины СО АМН СССР (г. Новосибирск) в результате длительных исследований показано, что в условиях азиатского Севера перестраивается обмен белков, жиров, углеводов, витаминов, макро- и микроэлементов, в связи с чем возникает необходимость уточнения норм питания человека с учетом сдвигов в обмене веществ. В настоящее время в широких масштабах ведутся исследования в области рационализации питания населения Сибири и Дальнего Востока. Первостепенная роль в изучении этого вопроса отводится биохимическим исследованиям.

Кафедра биохимии

Утверждаю

Зав. каф. проф., д.м.н.

Мещанинов В.Н.

_____‘’_____________2006 г

ЛЕКЦИЯ № 25

Тема: Водно-солевой и минеральный обмен

Факультеты: лечебно-профилактический, медико-профилактический, педиатрический.

Водно-солевой обмен – обмен воды и основных электролитов организма (Na + , K + , Ca 2+ , Mg 2+ , Cl - , HCO 3 - , H 3 PO 4).

Электролиты – вещества, диссоциирующие в растворе на анионы и катионы. Их измеряют в моль/л.

Неэлектролиты – вещества, недиссоциирующие в растворе (глюкоза, креатинин, мочевина). Их измеряют в г/л.

Минеральный обмен – обмен любых минеральных компонентов, в том числе и тех, которые не влияют на основные параметры жидкой среды в организме.

Вода – основной компонент всех жидкостей организма.

Биологическая роль воды

  1. Вода является универсальным растворителем для большинства органических (кроме липидов) и неорганических соединений.
  2. Вода и растворенные в ней вещества создают внутреннюю среду организма.
  3. Вода обеспечивает транспорт веществ и тепловой энергии по организму.
  4. Значительная часть химических реакций организма протекает в водной фазе.
  5. Вода участвует в реакциях гидролиза, гидратации, дегидратации.
  6. Определяет пространственное строение и свойства гидрофобных и гидрофильных молекул.
  7. В комплексе с ГАГ вода выполняет структурную функцию.

ОБЩИЕ СВОЙСТВА ЖИДКОСТЕЙ ОРГАНИЗМА

Все жидкости организма характеризуются общими свойствами: объемом, осмотическим давлением и величиной рН.

Объем. У всех наземных животных жидкости составляет около 70% от массы тела.

Распределение воды в организме зависит от возраста, пола, мышечной массы, телосложения и количества жира. Содержание воды в различных тканях распределяется следующим образом: легкие, сердце и почки (80%), скелетная мускулатура и мозг (75%), кожа и печень (70%), кости (20%), жировая ткань (10%). В целом, у худых людей меньше жира и больше воды. У мужчин на воду приходится 60%, у женщин - 50% от массы тела. У пожилых людей больше жира и меньше мышц. В среднем в организме мужчин и женщин старше 60 лет содержится соответственно 50% и 45% воды.



При полном лишении воды смерть наступает через 6-8 дней, когда количество воды в организме снижается на 12%.

Вся жидкость организма разделена на внутриклеточный (67%) и внеклеточный (33%) бассейны.

Внеклеточный бассейн (экстрацеллюлярное пространство) состоит из:

1. Внутрисосудистой жидкости;

2. Интерстициальной жидкости (межклеточная);

3. Трансцеллюлярной жидкости (жидкость плевральной, перикардиальной, перитонеальной полостей и синовиального пространства, цереброспинальная и внутриглазная жидкость, секрет потовых, слюнных и слезных желез, секрет поджелудочной железы, печени, желчного пузыря, ЖКТ и дыхательных путей).

Между бассейнами жидкости интенсивно обмениваются. Перемещение воды из одного сектора в другой происходит при изменении осмотического давления.

Осмотическое давление – это давление, которое создают все растворенные в воде вещества. Осмотическое давление внеклеточной жидкости определяется главным образом концентрацией NaCl.

Внеклеточная и внутриклеточная жидкости значительно отличаются по составу и концентрации отдельных компонентов, но общая суммарная концентрация осмотически активных веществ примерно одинакова.

рН – отрицательный десятичный логарифм концентрации протонов. Величина рН зависит от интенсивности образования в организме кислот и оснований, их нейтрализации буферными системами и удалением из организма с мочой, выдыхаемым воздухом, потом и калом.

В зависимости от особенности обмена, величина рН может заметно отличаться как внутри клеток разных тканей, так и в разных отсеках одной клетки (в цитозоле кислотность нейтральная, в лизосомах и в межмембранном пространстве митохондрий - сильно кислая). В межклеточной жидкости разных органов и тканей и плазме крови величина рН, как и осмотическое давление, относительно постоянная величина.

РЕГУЛЯЦИЯ ВОДНО-СОЛЕВОГО БАЛАНСА ОРГАНИЗМА

В организме водно-солевой баланс внутриклеточной среды поддерживается постоянством внеклеточной жидкости. В свою очередь, водно-солевой баланс внеклеточной жидкости поддерживается через плазму крови с помощью органов и регулируется гормонами.

Органы, регулирующие водно-солевой обмен

Поступление воды и солей в организм происходит через ЖКТ, этот процесс контролируется чувством жажды и солевым аппетитом. Выведение излишков воды и солей из организма осуществляют почки. Кроме того, воду из организма выводят кожа, легкие и ЖКТ.

Баланс воды в организме

Для ЖКТ, кожи и легких выведение воды является побочным процессом, который происходит в результате выполнения ими своих основных функций. Например, ЖКТ теряет воду, при выделении из организма непереваренных веществ, продуктов метаболизма и ксенобиотиков. Легкие теряют воду при дыхании, а кожа при терморегуляции.

Изменения в работе почек, кожи, легких и ЖКТ может привести к нарушению водно-солевого гомеостаза. Например, в жарком климате, для поддержания температуры тела, кожа усиливает потовыделение, а при отравлениях, со стороны ЖКТ возникает рвота или диарея. В результате усиленной дегидратации и потери солей в организме возникает нарушение водно-солевого баланса.

Гормоны, регулирующие водно-солевой обмен

Вазопрессин

Антидиуретический гормон (АДГ), или вазопрессин - пептид с молекулярной массой около 1100 Д, содержащий 9 АК, соединённых одним дисульфидным мостиком.

АДГ синтезируется в нейронах гипоталамуса, переносится в нервные окончания задней доли гипофиза (нейрогипофиз).

Высокое осмотическое давление внеклеточной жидкости активирует осморецепторы гипоталамуса, в результате возникают нервные импульсы, которые передаются в заднюю долю гипофиза и вызывают высвобождение АДГ в кровоток.

АДГ действует через 2 типа рецепторов: V 1 , и V 2 .

Главный физиологический эффект гормона, реализуется V 2 рецепторы, которые находятся на клетках дистальных канальцев и собирательных трубочек, которые относительно непроницаемы для молекул воды.

АДГ через V 2 рецепторы стимулирует аденилатциклазную систему, в результате фосфорилируются белки, стимулирующие экспрессию гена мембранного белка - аквапорина-2 . Аквапорин-2 встраивается в апикальную мембрану клеток, образуя в ней водные каналы. По этим каналам вода пассивной диффузией реабсорбируется из мочи в интерстициальное пространство и моча концентрируется.

В отсутствие АДГ моча не концентрируется (плотность <1010г/л) и может выделяться в очень больших количествах (>20л/сут), что приводит к дегидратации организма. Это состояние называется несахарный диабет .

Причиной дефицита АДГ и несахарного диабета являются: генетические дефекты синтеза препро-АДГ в гипоталамусе, дефекты процессинга и транспорта проАДГ, повреждения гипоталамуса или нейрогипофиза (например, в результате черепно-мозговой травмы, опухоли, ишемии). Нефрогенный несахарный диабет возникает вследствие мутации гена рецептора АДГ типа V 2 .

Рецепторы V 1 локализованы в мембранах ГМК сосудов. АДГ через рецепторы V 1 активирует инозитолтрифосфатную систему и стимулирует высвобождение Са 2+ из ЭР, что стимулирует сокращение ГМК сосудов. Сосудосуживающий эффект АДГ проявляется при высоких концентрациях АДГ.

Регуляция водного обмена осуще­ствляется нейрогуморальным путем, в частности, различными отде­лами центральной нервной системы: корой больших полушарий, промежуточным и продолговатым мозгом, симпатическими и пара­симпатическими ганглиями. Также участвуют многие железы внут­ренней секреции. Действие гормонов в данном случае сводится к тому, что они изменяют проницаемость клеточных мембран для воды, обеспечивая ее выделение или реадсорбцию.Потребность организма в воде регулируется чувством жаж­ды. Уже при первых признаках сгущения крови в результате рефлекторного возбуждения определенных участков коры го­ловного мозга возникает жажда. Потребляемая при этом вода всасывается через стенку кишечника, причем ее избыток не вызывает разжижения крови. Из крови она быстро переходит в межклеточные пространства рыхлой соединительной ткани, печени, кожи и др. Указанные ткани служат депо воды в орга­низме.На поступление и выделение воды из тканей определенное влияние оказывают отдельные катионы. Ионы Na + способствуют свя­зыванию коллоидными частицами белков, ионы К + и Са 2+ стимули­руют выделение воды из орга­низма.

Так, вазопрессин нейрогипофиза (антидиуретический гормон) способствует реадсорбции из пер­вичной мочи воды, уменьшая выделение последней из организма. Гормоны коры надпочечников – альдостерон, дезоксикортикостерол - способствует задержке натрия в организме, а так как катионы натрия повышают гидратацию тканей, то в них задерживается и вода. Другие гормоны стимулируют выделение воды почками: тироксин - гор­мон щитовидной железы, параттгормон - гормон паращитовидной железы, андрогены и эстрогены - гормоны половых желез.Гормоны щитовидной железы сти­мулируют выделение воды через по­товые железы.Количество воды в тканях, в первую очередь свободной, по­вышается при заболевании почек, нарушении функции сердечно-сосудистой системы, при белковом голодании, при нарушении функции печени (цирроз). Увеличение содержания воды в межклеточных пространствах приводит к отекам. Недостаточное образование вазопрессина приводит к увели­чению диуреза, к заболеванию несахарным диабетом. Обезво­живание организма также наблюдается при недостаточном образовании в коре надпочечников альдостерона.

Вода и растворенные в ней вещества, в том числе минераль­ные соли, создают внутреннюю среду организма, свойства ко­торой сохраняются постоянными или изменяются закономерным образом при изменении функционального состояния органов и клеток.Основными параметрами жидкой среды организма являютсяосмотическое давление ,рН иобъем .

Осмотическое давление внеклеточной жидкости в значитель­ной мере зависит от соли (NaCl), которая в этой жидкости содержится в наибольшей концентрации. Поэтому основ­ной механизм регуляции осмотического давления связан с изме­нением скорости выделения либо воды, либоNaCl, вследствие чего изменяется концентрацияNaClв жидкостях тканей, а зна­чит, изменяется и осмотическое давление. Регуляция объема происходит путем одновременного изменения скорости выделения и воды, иNaCl. Кроме того, механизм жажды регулирует потреб­ление воды. Регуляция рН обеспечивается избирательным выде­лением кислот или щелочей с мочой; рН мочи в зависимости от этого может изменяться в пределах от 4,6 до 8,0. С нарушением водно-солевого гомеостаза связаны такие па­тологические состояния, как дегидратация тканей или отеки, повышение или снижение кровяного давления, шок, ацидоз, алка­лоз.

Регуляция осмотического давления и объема внеклеточной жидкости. Выделение воды и NaCl почками регулируется антидиурети­ческим гормоном и альдостероном.

Антидиуретический гормон (вазопрессин). Вазопрессин синтезируется в нейронах гипоталамуса. Осморецепторы гипоталамуса при повышении осмотического давления тканевой жидкости сти­мулируют освобождение вазопрессина из секреторных гранул. Вазопрессин увеличивает скорость реабсорбции воды из первич­ной мочи и тем самым уменьшает диурез. Моча при этом становится более концентрированной. Таким путем антидиуретический гормон сохраняет необходимый объем жидкости в организме не влияя на количество выделяемого NaCl. Осмотическое давление внеклеточной жидкости при этом уменьшается, т. е. ликвидируется стимул, который вызвал выделение вазопрессина.При некоторых болезнях, повреждающих гипоталамус или гипофиз (опухоли, травмы, инфекции), синтез и секреция вазопрессина уменьшается и развивается несахарный диабет.

Кроме снижения диуреза вазопрессин вызывает также сужение артериол и капилляров (отсюда и название), а, следовательно, и повышение кровяного давления.

Альдостерон. Этот стероидный гормон вырабатывается в коре надпочечников. Секреция увеличивается при снижении концентрации NaCl в крови. В почках альдостерон увеличивает скорость реабсорбции Na + (а вместе с ним и С1) в канальцах нефронов, что вызывает задержку NaCl в организме. Тем самым устраняется стимул, который вызвал секрецию альдостерона.Избыточная секреция альдостерона приводит, соответственно, к избыточной задержке NaCl и повышению осмотического давления внеклеточной жидкости. А это служит сигналом освобождения вазопрессина, который ускоряет реабсорбцию воды в почках. В результате в организме накапливается и NaCl, и вода; объем внеклеточной жидкости увеличивается при сохранении нормального осмотического давления.

Система ренин-ангиотензин. Эта система служит главным механизмом регуляции секреции альдостерона; от нее зависит также и секреция вазопрессина.Ренин представляет собой протеолитический фермент, синтезирующийся в юкстагломерулярных клетках, окружающих приносящую артериолу почечного клубочка.

Ренин-ангиотензиновая система играет важную роль при восстановлении объема крови, который может уменьшиться в результате кровотечения, обильной рвоты, поноса (диарея), по­тения. Сужение сосудов под действием ангиотензина II играет роль экстренной меры для поддержания кровяного давления. Затем поступающие с питьем и пищей вода и NaCl задерживаются в организме в большей мере, чем в нор­ме, что обеспечивает восстановление объема и давления крови. После этого ренин перестает выделяться, уже имеющиеся в крови вещества-регуляторы разрушаются и система при­ходит в исходное состояние.

Значительное уменьшение объема циркулирующей жидкости может стать причиной опасного нарушения кровоснабжения тканей, прежде чем регуляторные системы восстановят давление и объем крови. При этом нарушаются функции всех органов, и, прежде всего, головного мозга; возникает состояние, которое называют шоком. В развитии шока (а также отеков) существенная роль принадлежит изменению нормального распределения жидкости и альбумина между кровеносным руслом и межклеточным пространством.Вазопрессин и альдостерон участвуют в регуляции водно-солевого баланса, действуя на уровне канальцев нефрона - изменяют скорость реабсорбции компонентов первичной мочи.

Водно-солевой обмен и секреция пищеварительных соков. Объем суточной секреции всех пищеварительных желез достаточно велик. В нормальных условиях вода этих жидкостей вновь всасывается в кишечнике; обильная рвота и ди­арея могут быть причиной значительного снижения объема внеклеточной жидкости и дегидратации тканей. Значительная потеря жидкости с пищеварительными соками влечет за собой повышение концентрации альбумина в плазме крови и межклеточной жидкости, поскольку альбумин с сек­ретами не выводится; по этой причине повышается осмотическое давление межклеточной жидкости, вода из клеток начинает переходить в межклеточную жидкость и функции клеток нарушаются. Высокое осмотическое давление внеклеточной жидкости приводит также к снижению или даже прекращению образования мочи, и если вода и соли не поступают извне, у животного развивается коматозное состояние.

ФУНКЦИОНАЛЬНАЯ БИОХИМИЯ

(Водно-солевой обмен. Биохимия почек и мочи)

УЧЕБНОЕ ПОСОБИЕ

Рецензент: профессор Н.В. Козаченко

Утверждена на заседании кафедры пр.№ _____ от _______________2004 г.

Утверждена зав. кафедрой ________________________________________

Утверждена на МК медико-биологического и фармацевтического факультетов

пр.№ _____ от _______________2004 г.

Председатель________________________________________________

Водно-солевой обмен

Одним из наиболее часто нарушающихся при патологии видов обмена веществ является водно-солевой. Он связан с постоянным движением воды и минеральных веществ из внешней среды организма во внутреннюю, и наоборот.

В организме взрослого человека на воду приходится 2/3 (58- 67%) массы тела. Около половины ее объема сосредоточено в мышцах. Потребность в воде (человек ежесуточно получает до 2,5-3 л жидкости) покрывается за счет поступления ее в виде питья (700-1700 мл), преформированной воды, входящей в состав пищи (800-1000 мл), и воды, образующейся в организме при обмене веществ - 200-300 мл (при сгорании 100 г жиров, белков и углеводов образуется соответственно 107,41 и 55 г воды). Эндогенная вода в относительно большом количестве синтезируется при активации процесса окисления жиров, что наблюдается при различных, прежде всего пролонгированных стрессовых состояниях, возбуждении симпатико-адреналовой системы, разгрузочной диетотерапии (нередко используемой для лечения больных ожирением).

Благодаря постоянно происходящим обязательным водным потерям внутренний объем жидкости в организме сохраняется неизмененным. К числу таких потерь относят ренальные (1,5 л) и экстраренальные, связанные с выделением жидкости через желу-дочно-кишечный тракт (50-300 мл), дыхательные пути и кожу (850-1200 мл). В целом объем обязательных потерь воды составляет 2,5-3 л, во многом зависят от количества выводимых из организма шлаков.

Участие воды в процессах жизнедеятельности весьма разнообразно. Вода является растворителем многих соединений, непосредственным компонентом ряда физико-химических и биохимических превращений, транспортером эндо- и экзогенных веществ. Кроме того, она выполняет механическую функцию, ослабляя трение связок, мышц, поверхности хрящей суставов (тем самым облегчая их подвижность), участвует в терморегуляции. Вода поддерживает гомеостаз, зависящий от величины осмотического давления плазмы (изоосмия) и объема жидкости (изоволемия), функционирования механизмов регуляции кислотно-основного состояния, протекания процессов, обеспечивающих постоянство температуры (изотермию).

В организме человека вода пребывает в трех основных физико-химических состояниях, в соответствии с которыми выделяют: 1) свободную, или мобильную, воду (составляет основную часть внутриклеточной жидкости, а также крови, лимфы, интерстициальной жидкости); 2) воду, связанную гидрофильными коллоидами, и 3) конституциональную, входящую в структуру молекул белков, жиров и углеводов.

В организме взрослого человека массой 70 кг объем свободной воды и воды, связанной гидрофильными коллоидами, составляет примерно 60% массы тела, т.е. 42 л. Эта жидкость представлена внутриклеточной водой (на ее долю приходится 28 л, или 40% массы тела), составляющей внутриклеточный сектор, и внеклеточной водой (14 л, или 20% массы тела), образующей внеклеточный сектор. В состав последнего входит внутрисосудистая (интраваскулярная) жидкость. Этот внутрисосудистый сектор образован плазмой (2,8 л), на долю которой приходится 4-5% массы тела, и лимфой.

Интерстициальная вода включает в себя собственно межклеточную воду (свободную межклеточную жидкость) и организованную внеклеточную жидкость (составляющую 15-16% массы тела, или 10,5 л), т.е. воду связок, сухожилий, фасций, хрящей и т.д. Кроме того, к внеклеточному сектору относят воду, находящуюся в некоторых полостях (брюшной и плевральной полости, перикарда, суставов, желудочков мозга, камерах глаза и др.), а также в желудочно-кишечном тракте. Жидкость этих полостей не принимает активного участия в метаболических процессах.

Вода человеческого организма не застаивается в различных его отделах, а постоянно движется, непрерывно обмениваясь с другими секторами жидкости и с внешней средой. Передвижение воды во многом осуществляется благодаря выделению пищеварительных соков. Так, со слюной, с соком поджелудочной железы в кишечную трубку направляется около 8 л воды в сутки,ноэта вода вследствие всасывания в более низких участках пищеварительного тракта практически не теряется.

Жизненно необходимые элементы подразделяются на макроэлементы (суточная потребность >100 мг) и микроэлементы (суточная потребность <100 мг). К макроэлементам относятся натрий (Na), калий (К), кальций (Ca), магний (Мg), хлор (Cl), фосфор (Р), сера (S) и иод (I). К жизненно важным микроэлементам, необходимым лишь в следовых количествах, относятся железо (Fe), цинк (Zn), марганец (Μn), медь (Cu), кобальт (Со), хром (Сr), селен (Se) и молибден (Мо). Фтор (F) не принадлежит к этой группе, однако он необходим для поддержания в здоровом состоянии костной и зубной ткани. Вопрос относительно принадлежности к жизненно важным микроэлементам ванадия, никеля, олова, бора и кремния остается открытым. Такие элементы принято называть условно эссенциальными.

В таблице 1 (колонка 2) приведено среднее содержание минеральных веществ в организме взрослого человека (в расчете на массу 65 кг).Среднесуточная потребность взрослого человека в указанных элементах приведена в колонке 4. У детей и женщин в период беременности и кормления ребенка, а также у больных потребность в микроэлементах обычно выше.

Так как многие элементы могут запасаться в организме, отклонение от суточной нормы компенсируется во времени. Кальций в форме апатита запасается в костной ткани, иод - в составе тиреоглобулина в щитовидной железе, железо - в составе ферритина и гемосидерина в костном мозге, селезенке и печени. Местом хранения многих микроэлементов служит печень.

Обмен минеральных веществ контролируется гормонами. Это относится, например, к потреблению Н 2 О, Ca 2+ , PO 4 3- , связыванию Fe 2+ , I - , экскреции H 2 O, Na + , Ca 2+ , PO 4 3- .

Количество минеральных веществ, абсорбированных из пищи, как правило, зависит от метаболических потребностей организма и в ряде случаев от состава пищевых продуктов. В качестве примера влияния состава пищи можно рассмотреть кальций. Всасыванию ионов Ca 2+ способствуют молочная и лимонная кислоты, в то время как фосфат-ион, оксалат-ион и фитиновая кислота ингибируют всасывание кальция из-за комплексообразования и образования плохо растворимых солей (фитин).

Дефицит минеральных веществ - явление не столь редкое: оно возникает по различным причинам, например из-за однообразного питания, нарушения усвояемости, при различных заболеваниях. Недостаток кальцияможет наступить в период беременности, а также при рахите или остеопорозе. Хлородефицит наступает из-за большой потери ионов Сl - при сильной рвоте.

Из-за недостаточного содержания иода в пищевых продуктах во многих районах Центральной Европы распространенным явлением стали иододефицитные состояния и зобная болезнь. Дефицит магния может возникать из-за диареи или из-за однообразного питания при алкоголизме. Недостаток в организме микроэлементов часто проявляется нарушением кроветворения, т. е. анемией.

В последней колонке перечислены функции, выполняемые в организме указанными минеральными веществами. Из данных таблицы видно, что почти все макроэлементы функционируют в организме как структурные компоненты и электролиты. Сигнальные функции выполняют иод (в составе иодтиронина) и кальций. Большинство микроэлементов являются кофакторами белков, главным образом ферментов. В количественном отношении в организме преобладают железосодержащие белки гемоглобин, миоглобин и цитохром, а также более 300 цинксодержащих белков.

Таблица 1


Похожая информация.