Пресноводный полип-гидра, среда обитания и внешнее строение, лучевая симметрия, внутренние строение. Что такое лучевая симметрия

Ответы к госам (11)

11. Типы симметрии беспозвоночных животных

Симметрия, или соразмерность частей целого организма, имеет непосредственное отношение к характеру приспособленности животных к условиям существования. Симметрия косвенно или прямо отражает особенности функциональной морфологии, образа жизни и поведения животного.

Элементы симметрии необходимы для определения типа симметрии, характерного для того или иного организма или группы организмов.

Центр симметрии - это точка, вокруг которой вращается какое-либо тело. Во время вращения контуры тела непрерывно совпадают при повороте на любой угол в любом направлении. Из живых объектов примером может условно служить шаровидное яйцо с ядром, расположенным в центре. Близкую форму имеет колониальный жгутиконосец Volvox globator, тело которого непрерывно вращается в толще озерной или прудовой воды.

Ось симметрии - это ось вращения. В этом случае у животных, как правило, отсутствует центр симметрии. Тогда вращение может происходить только вокруг оси. При этом ось чаще всего имеет разнокачественные полюса. Например, у свободноплавающей личинки кишечнополостных - гаструлы на одном полюсе расположен рот, а на противоположном - чувствительный аборальный орган. При естественном вращении вокруг оси личинка плывет аборальным органом вперед, а ртом назад. У взрослых кишечнополостных, например у гидры или актинии, на одном полюсе расположен рот, а на другом - подошва, которой эти неподвижные животные прикреплены к субстрату. Ось симметрии может совпадать морфологически с переднезадней осью тела.

Плоскость симметрии - это плоскость, проходящая через ось симметрии, совпадающая с ней и рассекающая тело на две зеркальные половины. Эти половины, расположенные друг против друга, называют антимерами. Например, у гидры плоскость симметрии должна пройти через ротовое отверстие и через подошву. Антимеры противоположных половин должны иметь равное число щупалец, расположенных вокруг рта гидры. У гидры можно провести несколько плоскостей симметрии, число которых будет кратно числу щупалец. У актиний с очень большим числом щупалец и гастральных перегородок можно провести много плоскостей симметрии. У медузы с четырьмя щупальцами на колоколе число плоскостей симметрии будет ограничено числом, кратным четырем. У гребневиков только две плоскости симметрии - глоточная и щупальцевая. Наконец, у двусторонне-симметричных организмов только одна плоскость и только две зеркальные антимеры - соответственно правая и левая стороны животного.

Типы симметрии В.Н. Беклемишева. Подробный анализ элементов симметрии и подробную классификацию типов симметрии протистов:

Анаксонная . Простейшие с наиболее примитивной архитектоникой (амёбы) характеризуются полным отсутствием симметрии.

Сферическая (гомаксонная). Симметричность относительно вращений в трехмерном пространстве на произвольные углы. Имеется центр симметрии, в котором пересекается бесконечное число осей симметрии бесконечно большого порядка. Характерна для колониальных радиолярий и кокцидий.

Неопределенно полиаксонная (есть центр симметрии и конечное, но неопределённое число осей и плоскостей) - многие солнечники.

Правильная полиаксонная (строго определенное число осей симметрии определённого порядка) - многие радиолярии.

Ставраксонная (монаксонная) гомополярная (есть одна ось симметрии с равноценными полюсами, то есть пересекаемая в центре плоскостью симметрии, в которой лежат не менее двух дополнительных осей симметрии) - некоторые радиолярии.

Монаксонная гетерополярная (есть одна ось симметрии с двумя неравноценными полюсами, центр симметрии исчезает) - многие радиолярии и жгутиковые, раковинные корненожки, грегарины, примитивные инфузории.

Билатеральная - дипломонады, бодониды, фораминиферы.

Симметрия многоклеточных.

Радиальная симметрия - форма симметрии, при которой тело (или фигура) совпадает само с собой при вращении объекта вокруг определённой точки или прямой. Часто эта точка совпадает с центром симметрии объекта, то есть той точкой, в которой пересекается бесконечное количество осей или плоскостей двусторонней симметрии. В биологии о радиальной симметрии говорят, когда через трёхмерное существо проходят одна или более осей симметрии. При этом радиальносимметричные животные могут и не иметь плоскостей симметрии. Обычно через ось симметрии проходят две или более плоскости симметрии. Эти плоскости пересекаются по прямой - оси симметрии. Если животное будет вращаться вокруг этой оси на определённый градус, то оно будет отображаться само на себе (совпадать само с собой). Как правило, у многоклеточных животных два конца (полюса) единственной оси симметрии неравноценны (например, у медуз на одном полюсе (оральном) находится рот, а на противоположном (аборальном) - верхушка колокола. Такая симметрия (вариант радиальной симметрии) в сравнительной анатомии называется одноосно-гетеропольной. В двухмерной проекции радиальная симметрия может сохраняться, если ось симметрии направлена перпендикулярно к проекционной плоскости. Иными словами, сохранение радиальной симметрии зависит от угла наблюдения. Радиальная симметрия характерна для многих стрекающих, а также для большинства иглокожих. Среди них встречается так называемая пентасимметрия, базирующаяся на пяти плоскостях симметрии. У иглокожих радиальная симметрия вторична: их личинки двустороннесимметричны, а у взрослых животных наружная радиальная симметрия нарушается наличием мадрепоровой пластинки.

Билатера́льная симме́трия (двусторонняя симметрия) - симметрия зеркального отражения, при которой объект имеет одну плоскость симметрии, относительно которой две его половины зеркально симметричны. У животных появление билатеральной симметрии в эволюции связано с ползанием по субстрату (по дну водоема), в связи с чем появляются спинная и брюшная, а также правая и левая половины тела. В целом среди животных билатеральная симметрия более выражена у активно подвижных форм, чем у сидячих. Билатеральная симметрия свойственна всем достаточно высокоорганизованным животным, кроме иглокожих.

Вращательно-поступательная симметрия . Этот тип симметрии имеет ограниченное распространение в животном мире. Эта симметрия характерна тем, что при повороте на определенный угол часть тела немного проступает вперед и ее размеры каждый следующий шаг логарифмически увеличивает на определенную величину. Таким образом, происходит совмещение актов вращения и поступательного движения. Примером могут служить спиральные камерные раковины фораминифер (одноклеточные), а также спиральные камерные раковины некоторых головоногих моллюсков (современный наутилус или ископаемые раковины аммонитов). С некоторым условием к этой группе можно отнести также и некамерные спиральные раковины брюхоногих моллюсков.

Тип Плоские черви. Органы чувств. Половая система ленточных. Пищеварительная система ресничных. Газообмен и транспорт веществ. Ленточные черви. Класс Ленточные черви. Жизненные циклы ленточных червей. Строение плоских червей. Турбеллярия. Нервная система. Класс Ресничные черви. Пищеварительная система. Ресничные черви. Плоские черви. Движение. Класс Сосальщики. Половая система. Половая система сосальщиков.

«Особенности строения планарии» - Актуализация знаний. Нервная система планарии. Различные виды планарий. Кишечнополостные. Бурая планария. Общие признаки. Тип Плоские черви. Ответноя реакция организма на раздражение. Общая характеристика типа. Белая планария или молочная. Слои тела планарии и гидры. Численность рыбы. Пищеварительная система планарии. Белая планария. Общие признаки типа. Великолепный псевдобицерос. Ресничные черви.

«Строение планарии» - Движения планарии. Выделительная система. Плоские черви. Половая система. Пространство между органами. Яйца покрываются плотными оболочками. Внутреннее строение планарии. Признаки плоских червей. Тип Плоские черви. Однослойный эпителий. Нервная система. Пищеварительная система. Тип Ресничные черви. Кольцевые мышцы. Тело планарии. Молочная планария. Появление в процессе развития третьего зародышевого листка.

«Строение белой планарии» - Глотка и кишка. Строение. Нервная система белой планарии. Захват пищи белой планарией. Расположение мышц. Мускулатура. Разнообразие плоских червей. Питание и передвижение. Плоские черви. Класс Турбеллярии. Усложнение полости тела. Кольчатые черви. Нервная система и органы чувств. Строение планарии. Состав группы. Plathelminthes. Нефридии и почки накопления. Покровы тела.

При сравнении представителей разных систематических групп создается впечатление, что они необычайно разнообразны. Тем не менее различия животных не бесконечны.

Как было показано Ч. Дарвином, множество родственных групп животных произошло от одной предковой линии. «Спускаясь» от кончиков ветвей родословного древа животных к узлам ветвления и в конечном итоге к стволам, мы улавливаем общность многих организмов в их планах строения. Ученые установили несколько таких планов, в которые укладывается большое число вариантов. Следует помнить, что план строения - это то общее, что характерно для множества групп. Варианты же - это частности, детали, которые первыми бросаются в глаза и нередко маскируют принадлежность животного к определенному типу. Общность планов строения указывает на гомологию - сходство, основанное на родстве организмов.

За немногими исключениями, животные отличаются симметричным строением. Различают два типа симметрии - радиальную, или лучевую, и билатеральную, или двустороннюю. Оба этих типа одновременно встречаются только у беспозвоночных животных. Позвоночные - всегда билатеральны.

В теле радиально-симметричного животного (рис. 1) можно различить главную продольную ось, вокруг которой в радиальном (лучевом) порядке расположены органы.

Порядок радиальной симметрии зависит от числа повторяющихся органов. Если вокруг этой воображаемой главной оси расположено 5 одинаковых органов, то симметрия называется пятилучевой, если 4 - четырехлучевой и т. д. Вследствие этого через тело животного (его центр) можно провести строго определенное

число плоскостей симметрии, которыми тело делится на две половины, зеркально отображающие друг друга. Радиальная симметрия имеет две разновидности: радиально-лучевую и радиаль-но-осевую симметрии.

Радиально-лучевая симметрия наблюдается у многих организмов, взвешенных в воде (ряда одноклеточных, а также колониальных одноклеточных и некоторых колоний многоклеточных), у которых со всех сторон среда обитания одинакова.

Радиально-осевая симметрия наблюдается у нескольких групп беспозвоночных (кишечнополостных, иглокожих и др.), которые характеризуются тем, что ведут (или их предковые формы вели) прикрепленный образ жизни. Значит, сидячий образ жизни способствует развитию лучевой симметрии (Догель, 1981). Биологическое объяснение такого строения заключается в следующем. Сидячие животные одним полюсом (аборальным) прикрепляются к субстрату, другой же полюс (оральный), на котором находится ротовое отверстие, свободен. Этот полюс со всех сторон поставлен в идентичные условия по отношению к факторам окружающей среды. Поэтому различные органы одинаково развиваются на радиально расположенных частях тела, а главная ось соединяет оба полюса.

Билатеральная симметрия тела животного характерна тем, что через его тело можно провести только одну плоскость симметрии, делящую его на две равные (зеркально отражающие друг друга) половины - левую и правую. Двусторонняя симметрия возникла у животных при переходе их планктонных предков к жизни и передвижению на дне. При этом кроме переднего и заднего конца тела у них стали различаться спинная (дорсальная) и брюшная (вентральная) стороны. Примерами билатерально-симметричных животных могут служить черви, членистоногие, все хордовые животные, в том числе и человек.

Биологическое объяснение билатеральности заключается в следующем.

При переходе к ползающему (на дне) образу жизни две стороны животного - брюшная и спинная - попадают в разные условия по отношению к факторам среды. Один конец тела становится передним и к нему сдвигается ротовое отверстие, а также органы чувств. Это и понятно, поскольку при движении этот конец первым встречает источники раздражения. Главная ось тела проходит от переднего полюса, на котором оказывается рот, до заднего, где расположено анальное отверстие. Боковые части находятся в равном положении. Единственную плоскость симметрии можно провести, только «разрезав» животное на левую и правую половины вдоль главной оси тела.

симметрия подобия;

радиально-лучевая симметрия

Отражение – это наиболее известная и чаще других встречающаяся в природе разновидность симметрии. Зеркало в точности воспроизводит то, что оно «видит», но рассмотренный порядок является обращенным: правая рука у вашего двойника в действительности окажется левой, так как пальцы расположены на ней в обратном порядке.

Зеркальную симметрию

можно обнаружить повсюду: в листьях и цветах растений, архитектуре, орнаментах. Человеческое тело, если говорить лишь о наружном виде, обладает зеркальной симметрией, хотя и не вполне строгой. Более того, зеркальная симметрия свойственна телам почти всех живых существ, и такое совпадение отнюдь не случайно.

Зеркальной симметрией обладает все, допускающее разбиение на две зеркально равные половинки. Каждая из половинок служит зеркальным отражением другой, а разделяющая их плоскость называется плоскостью зеркального отражения, или зеркальной плоскостью. Эту плоскость можно назвать элементом симметрии, а соответствующую операцию – операцией симметрии.

Поворотная симметрия.

Внешний вид узора не изменится, если его повернуть на некоторый угол вокруг оси. Симметрия, возникающая при этом, называется поворотной симметрией. Во многих танцах фигуры основаны на вращательных движениях, нередко совершаемых только в одну сторону (т.е. без отражения), например, хороводы.

Листья и цветы многих растений обнаруживают радиальную симметрию. Это такая симметрия, при которой лист или цветок, поворачиваясь вокруг оси симметрии, переходит в себя. На поперечных сечениях тканей, образующих корень или стебель растения, отчетливо бывает видна радиальная симметрия. Соцветия многих цветков также обладают радиальной симметрией.

Отражение в центре симметрии.

Примером объекта наивысшей симметрии, характеризующим эту операцию симметрии, является шар. Шаровые формы распространены в природе достаточно широко. Они обычны в атмосфере (капли тумана, облака), гидросфере (различные микроорганизмы), литосфере и космосе. Шаровую форму имеют споры и пыльца растений, капли воды, выпущенной в состоянии невесомости на космическом корабле. На метагалактическом уровне наиболее крупными шаровыми структурами являются галактики шаровой формы. Чем плотнее скопление галактик, тем ближе оно к шаровой форме. Звездные скопления – тоже шаровые формы.

Трансляция, или перенос фигуры на расстояние.

Трансляция, или параллельный перенос фигуры на расстояние – это любой неограниченно повторяющийся узор. Она может быть одномерной, двумерной, трехмерной. Трансляция в одном и том же или противоположных направлениях образует одномерный узор. Трансляция по двум непараллельным направлениям образует двумерный узор. Паркетные полы, узоры на обоях, кружевные ленты, дорожки, вымощенные кирпичом или плитками, кристаллические фигуры образуют узоры, которые не имеют естественных границ.

Винтовые повороты.

Трансляцию можно комбинировать с отражением или поворотом, при этом возникают новые операции симметрии. Поворот на определенное число градусов, сопровождаемый трансляцией на расстояние вдоль оси поворота, порождает винтовую симметрию – симметрию винтовой лестницы. Пример винтовой симметрии – расположение листьев на стебле многих растений.

Головка подсолнечника имеет отростки, расположенные по геометрическим спиралям, раскручивающимся от центра наружу. Самые молодые члены спирали находятся в центре.

В таких системах можно заметить два семейства спиралей, раскручивающихся в противоположные стороны и пересекающихся под углами, близкими к прямым.

Вслед за Гете, который говорил о стремлении природы к спирали, можно предположить, что движение это осуществляется по логарифмической спирали, начиная всякий раз с центральной, неподвижной точки и сочетая поступательное движение (растяжение) с поворотом вращения.

Симметрия подобия.

К перечисленным выше операциям симметрии можно добавить операцию симметрии подобия, представляющую собой своеобразные аналогии трансляций, отражений в плоскостях, повороты вокруг осей с той только разницей, что они связаны с одновременным увеличением или уменьшением подобных частей фигуры и расстояний между ними.

Симметрия подобия, осуществляющаяся в пространстве и во времени, повсеместно проявляется в природе на всем, что растет. Именно к растущим формам относятся бесчисленные фигуры растений, животных и кристаллов. Форма древесного ствола – коническая, сильно вытянутая. Ветви обычно располагаются вокруг ствола по винтовой линии. Это не простая винтовая линия: она постепенно суживается к вершине. Да и сами ветви уменьшаются по мере приближения к вершине дерева. Следовательно, здесь мы имеем дело с винтовой осью симметрии подобия.

Живая природа в любых ее проявлениях обнаруживает одну и ту же цель: всякий живой предмет повторяет себя в себе подобном. Главной задачей жизни является Жизнь, а доступная форма бытия заключается в существовании отдельных целостных организмов.

Радиально-лучевая симметрия в природе.

Внимательно приглядевшись к обступающей нас природе, можно увидеть общее даже в самых незначительных вещах и деталях. Форма листа дерева не является случайной: она строго закономерна. Листок как бы склеен из двух более или менее одинаковых половинок, одна из которых расположена зеркально относительно другой. Симметрия листка упорно повторяется, будь то гусеница, бабочка, жучок и т.п.

Радиально-лучевой симметрией обладают цветы, грибы, деревья, фонтаны. Здесь можно отметить, что на не сорванных цветах и грибах, растущих деревьях, бьющем фонтане или столбе паров плоскости симметрии ориентированы всегда вертикально.

Таким образом, можно сформулировать в несколько упрощенном и схематизированном виде общий закон, ярко и повсеместно проявляющийся в природе: все, что растет или движется по вертикали, т.е. вверх или вниз относительно земной поверхности, подчиняется радиально-лучевой симметрии в виде веера пересекающихся плоскостей симметрии. Все то, что растет и движется горизонтально или наклонно по отношению к земной поверхности, подчиняется билатеральной симметрии, симметрии листка. Этому всеобщему закону подчиняются не только цветы, животные, легкоподвижные жидкости и газы, но и камни. Этот закон влияет на изменчивые формы облаков. В безветренный день они имеют куполовидную форму с более или менее ясно выраженной радиально-лучевой симметрией.

Мы уже упоминали о том, что возникающий в калейдоскопе узор обладает не только зеркальной, но и поворотной симметрией. Это означает, что внешний вид узора не изменится, если его повернуть на определенный угол вокруг оси, проходящей через центр. Угол поворота зависит от угла между зеркалами. Операция симметрии в этом случае сводится к повороту на конкретный угол, а элементом симметрии служит воображаемая ось, вокруг которой происходит поворот. (В калейдоскопе ось поворота совпадает с линией пересечения зеркал). Если угол поворота равен 90 градусов, то чтобы совершить полный оборот на 360 градусов, необходимо совершить один за другим 4 поворота. В этом случае ось называется осью симметрии четвертого порядка. Если угол поворота равен 120 градусам, то мы имеем дело с осью третьего порядка, а если угол поворота равен 60 градусам, - с осью шестого порядка.

Существуют также узоры с поворотной симметрией, не обладающие плоскостями зеркальной симметрии. Такие узоры встречаются нескольких типов, и мы отмечаем их и в плоских орнаментах, и в трехмерных предметах, и в движениях. Детская вертушка может служить примером фигуры с поворотной симметрией, но не обладающей плоскостями симметрии.

Симметрия, возникающая при вращении фигуры вокруг центра вращения, называется центральной или радиально-лучевой симметрией. Образцами такой симметрии могут служить цветы различных растений, например ромашка, василек, подсолнух. Данный вид симметрии используется при создании розеток и плафонов. Он лежит в основе таких форм как колесо со спицами, солнце с лучами. Наивысшей степенью симметрии обладает шар, так как в центре его пересекается бесконечное множество осей и плоскостей симметрии.

5.3. Узоры и разбиения. Упражнения на основе симметрии трансляции и узоров на плоскости

Перечисленные виды симметрии широко используют художники в своих произведениях. Так, работы голландского художника Морица Эшера представляют собой хитроумные орнаменты, заполняющие всю плоскость картины. Замечательным примером орнаментальной симметрии является его работа "Ящерицы". Одинаковыми фигурами - ящерицами, неправильными с точки зрения геометрии, составлена мозаика. Эти фигуры плотно упаковывают поверхность, не образуя ни промежутков, ни накладок. Основательный с научной точки зрения разбор этой работы сделал доктор технических наук С. Алегин в статье "Симметрия орнамента" (журнал "Наука и жизнь", 1974, № 4). Симметрия является одним из важных средств достижения единства и художественной выразительности композиции. Однако наряду с ней широко применяется и асимметрия такое сочетание и расположение элементов, при котором ось или плоскость симметрии отсутствует. В такой композиции для достижения единства формы особенно важна зрительная уравновешенность всех ее частей по массе, фактуре и цвету.

В сложной композиции симметричные группы элементов могут сочетаться с асимметричными. Асимметричная композиция применяется обычно для подчеркивания динамичности образа изделия или сооружения. В асимметричных композициях равновесие достигается путем приближения более легких форм к краю картинной плоскости. Симметрия предполагает: слабость, строгость, отдых, спокойствие, классицизм, силу как в совокупности, так и в деталях. Асимметрия означает: движение, динамизм, "жизнь", свободу. Если симметрия связывается с равновесием, покоем, то асимметрия говорит об отсутствии равновесия, нарушении покоя. Асимметрия по своей природе настроена на более активные связи с окружающей средой, поэтому она всегда вызывает повышенный интерес у художников. Проблема более быстрого вхождения новой формы в жизненную среду или же, наоборот, проблема выделения из окружающей среды чаще всего решается на динамичных формах, так как среда в целом тяготеет к статике. Стремление асимметричных форм к активному воздействию на среду объясняется тем, что объект с ярко выраженной асимметрией образует как бы прорыв в общем природном, симметричном поле.

Симметрия и асимметрия в искусстве - два взаимно проникающих, взаимно сцепляющихся метода, которые дают множество произведений с гармоничным сосуществованием и статики, и динамики. Они как бы выражают две стороны жизни человека, его характер. Знание особенностей статичных и динамичных построений дает возможность выхода на композиции с нюансированным преобладанием тех или других начал.

Признавая огромную роль простого равновесия (равного «веса» составляющих целое частей) в понятии о симметрии, мы осознаём важное значение его закономерностей в проектировании. Изображения предметов, имеющих разную форму, цвет, размер и находящихся на неодинаковом расстоянии от оси симметрии, имеют разный «вес» в композиции. Это психологически обоснованно. В прикладном искусстве кроме главной оси, объединяющей целое, бывают и подчиненные оси, обеспечивающие внутреннюю симметрию деталей.

Абсолютная, жесткая симметрия характерна для неживой природы - кристаллов (минералов, снежинок). Для органической природы, для живых организмов характерна неполная симметрия (квазисимметрия), (например, в строении человека). Нарушение симметрии, асимметрия (отсутствие симметрии) используется в искусстве как художественное средство. Небольшое отклонение от правильной симметрии, то есть некоторая асимметричность, нарушая равновесие, привлекает к себе внимание, вносит элемент движения и создает впечатление живой формы. Различные виды симметрии обладают различным воздействием на эстетическое чувство: зеркальная симметрия - равновесие, покой; винтовая симметрия вызывает ощущение движения. Хзмбидж причисляет все простые геометрические фигуры к статичной симметрии, (разделяя все виды симметрии на статичные и динамичные), а к динамичной симметрии относит спираль. В основе статичной симметрии часто лежит пятиугольник (срез цветка или плода) или квадрат (в минералах). В искусстве строгая математическая симметрия используется редко. Роли симметрии в науке, искусстве, в природе посвящена масса работ, список которых непрерывно пополняется. Классические определения симметрии сегодня соседствуют с понятиями о криволинейной симметрии, симметрии подобия и антисимметрии, динамической симметрии и т. д.

Симметрия и асимметрия, - характеризуется местоположением элементов относительно оси или центра вращения. Благодаря симметрии фиксируются правая и левая части изобразительного целого, акцентируется центр и воображаемая ось. Симметрия подразумевает равноценность, равновеликость. Благодаря симметрии композиция приобретает устойчивость, равновесие. Симметрия означает родство, сходство, но может служить и средством противопоставления (симметричное изображение, контрастное по тону или цвету; противопоставление двух контрастных фигур) в психологическом плане. Симметрия придает изображению статичность. Асимметрия ее нарушает, сохраняя, однако ориентацию относительно оси, хотя при этом и отклоняется от нее. Асимметрия несет динамическое начало.

В пропорции и соразмерности проявляются количественные отношения между частями целого и целым. Греки к ним присоединяли и симметрию, рассматривая ее как вид соразмерности, - как ее частный случай - тождество. Она, как и пропорция, почиталась необходимым условием гармонии и красоты.

Симметрия основана на подобии. Она означает такое соотношение между элементами, фигурами, когда они повторяют и уравновешивают друг друга. В математике под симметрией подразумевается совмещение частей фигуры при перемещении ее относительно оси или центра симметрии. Существуют различные виды симметрии.