Теория строения органических соединений типы связей. Основные положения теории химического строения А.М

Химия - это наука, которая дает нам все то разнообразие материалов и предметов быта, которым мы, не задумываясь, пользуемся каждый день. Но чтобы прийти к открытию такого многообразия соединений, которое известно сегодня, многим химикам пришлось пройти сложный научный путь.

Огромный труд, многочисленные удачные и безуспешные эксперименты, колоссальная теоретическая база знаний - все это привело к формированию различных областей промышленной химии, позволило синтезировать и использовать современные материалы: резины, пластики, пластмассы, смолы, сплавы, различные стекла, силиконы и так далее.

Одним из самых известных, заслуженных ученых-химиков, внесших неоценимый вклад в развитие именно органической химии, был русский человек Бутлеров А. М. Его труды, заслуги и результаты работ мы и рассмотрим кратко в данной статье.

Краткая биография

Дата рождения ученого - сентябрь 1828 года, число в разных источниках неодинаковое. Он был сыном подполковника Михаила Бутлерова, мать потерял достаточно рано. Все детство прожил в родовом имении деда, в деревне Подлесная Шентала (ныне район республики Татарстан).

Учился в разных местах: сначала в закрытой частной школе, затем в гимназии. Позже поступил в Казанский университет на отделение физики и математики. Однако несмотря на это больше всего интересовался химией. Будущий автор теории строения органических соединений остался по окончании учебы на месте в качестве преподавателя.

1851 год - время защиты первой диссертационной работы ученого по теме "Окисление органических соединений". После блестящего выступления ему предоставили возможность управления всей химией в своем университете.

Скончался ученый в 1886 году там, где провел детство, в родовом имении деда. В фамильной местной часовне он и был захоронен.

Вклад ученого в развитие химических знаний

Теория строения органических соединений Бутлерова - это, безусловно, его основной труд. Однако не единственный. Именно этот ученый первым создал русскую школу химиков.

Причем из ее стен вышли такие ученые, которые в дальнейшем имели большой вес в развитии всей науки. Это следующие люди:

  • Марковников;
  • Зайцев;
  • Кондаков;
  • Фаворский;
  • Коновалов;
  • Львов и другие.

Работы по органической химии

Таких трудов можно назвать множество. Ведь Бутлеров практически все свободное время проводил в лаборатории своего университета, осуществляя различные эксперименты, делая выводы и заключения. Именно так и родилась теория органических соединений.

Есть несколько особенно емких работ ученого:

  • им был создан доклад на конференцию на тему "О химическом строении вещества";
  • диссертационный труд "Об эфирных маслах";
  • первая научная работа "Окисление органических соединений".

Перед ее формулировкой и созданием автор теории строения органических соединений долго изучал работы других ученых из разных стран, исследовал их труды, в том числе и экспериментальные. Только потом, обобщив и систематизировав полученные знания, он отразил все выводы в положениях своей именной теории.

Теория строения органических соединений А. М. Бутлерова

XIX век знаменуется бурным развитием практически всех наук, в том числе и химии. В частности, продолжают копиться обширные открытия по углероду и его соединениям, поражают всех своим многообразием. Однако никто не осмеливается систематизировать и упорядочить весь этот фактический материал, привести к общему знаменателю и выявить единые закономерности, на которых все построено.

Первым это сделал Бутлеров А. М. Именно ему принадлежит гениальная теория химического строения органических соединений, о положениях которой он рассказал массово на немецкой конференции химиков. Это стало началом новой эпохи в развитии науки, органическая химия встала на

Сам ученый шел к этому постепенно. Он провел множество опытов и предсказал существование веществ с заданными свойствами, открыл некоторые типы реакций и увидел за ними будущее. Много изучал труды своих коллег и их открытия. Только на фоне этого путем тщательного и кропотливого труда ему удалось-таки создать свой шедевр. И теперь теория строения органических соединений в данном - практически то же самое, что и периодическая система в неорганической.

Открытия ученого перед созданием теории

Какие были сделаны открытия и даны теоретические обоснования ученым перед тем, как появилась теория строения органических соединений А. М. Бутлерова?

  1. Отечественный гений первым синтезировал такие органические вещества, как уротропин, формальдегид, йодистый метилен и другие.
  2. Синтезировал из неорганики сахароподобное вещество (третичный спирт), тем самым нанеся очередной удар по теории витализма.
  3. Предсказал будущее за реакциями полимеризации, назвав их лучшими и перспективными.
  4. Изомерия объяснена была впервые только им.

Конечно, это только основные вехи его работ. На самом деле, многолетний кропотливый труд ученого можно описывать долго. Однако самой значимой на сегодня стала все-таки теория строения органических соединений, о положениях которой и поговорим дальше.

Первое положение теории

В 1861 году великий русский ученый на съезде химиков в городе Шпейере делится с коллегами своими взглядами на причины строения и многообразия органических соединений, выражая все это в форме положений теории.

Самый первый пункт следующий: все атомы в пределах одной молекулы соединены в строгой последовательности, которая определяется их валентностью. При этом атом углерода проявляет показатель валентности, равный четырем. Кислород имеет значение данного показателя, равное двум, водород - единице.

Подобную особенность он предложил называть химическим Позже были приняты обозначения выражения его на бумаге при помощи графических полных структурных, сокращенных и молекулярных формул.

Сюда же относится и явление соединения углеродных частиц друг с другом в бесконечные цепи разного строения (линейные, циклические, разветвленные).

В общем, теория строения органических соединений Бутлерова своим первым положением определила значимость валентности и единой формулы для каждого соединения, отражающей свойства и поведение вещества во время реакций.

Второе положение теории

В данном пункте было дано объяснение многообразию органических соединений в мире. Опираясь на соединения углеродов в цепи, ученый высказал мысль о том, что в мире присутствуют неодинаковые соединения, имеющие различные свойства, но при этом совершенно идентичные по молекулярному составу. Другими словами, существует явление изомерии.

Этим положением теория строения органических соединений А. М. Бутлерова не просто пояснила суть изомеров и изомерии, но и сам ученый практическим опытным путем все подтвердил.

Так, например, он синтезировал изомер бутана - изобутан. Затем предсказал для пентана существование уже не одного, а трех изомеров, исходя из строения соединения. И синтезировал их все, доказав свою правоту.

Раскрытие третьего положения

Следующий пункт теории говорит о том, что все атомы и молекулы в пределах одного соединения способны влиять на свойства друг на друга. От этого и будет зависеть характер поведения вещества в реакциях разных типов, проявляемые химические и другие свойства.

Таким образом, на основании этого положения выделяют несколько отличающихся видом и строением функциональной определяющей группы.

Теория строения органических соединений А. М. Бутлерова кратко излагается практически во всех учебных пособиях по органической химии. Ведь именно она - основа данного раздела, объяснение всех закономерностей, на которых построены молекулы.

Значение теории для современности

Безусловно, оно велико. Данная теория позволила:

  1. объединить и систематизировать весь фактический материал, накопившийся к моменту ее создания;
  2. объяснить закономерности строения, свойств различных соединений;
  3. дать полное пояснение причинам такого большого многообразия соединений в химии;
  4. дала старт для многочисленных синтезов новых веществ, базирующихся на положениях теории;
  5. позволила продвинуться взглядам, развиться атомно-молекулярному учению.

Поэтому сказать, что автор теории строения органических соединений, фото которого можно увидеть ниже, сделал многое,- это не сказать ничего. Бутлерова по праву можно считать отцом органической химии, родоначальником ее теоретических основ.

Его научное видение мира, гениальность мышления, способность предвидеть результат сыграли свою роль в конечном счете. Этот человек обладал колоссальной работоспособностью, терпением и неустанно экспериментировал, синтезировал, тренировался. Ошибался, но всегда извлекал урок и делал правильные перспективные выводы.

Только такой набор качеств и деловая хватка, упорство позволили добиться желаемого эффекта.

Изучение органической химии в школе

В курсе среднего образования на изучение основ органики отводится не так много времени. Всего одна четверть 9 класса и весь год 10 ступени (по программе Габриэляна О. С.). Однако этого времени достаточно, чтобы ребята смогли изучить все основные классы соединений, особенности их строения и номенклатуры, практическую значимость.

Основа же для начала освоения курса - теория строения органических соединений А. М. Бутлерова. 10 класс посвящается полному рассмотрению ее положений, а в дальнейшем - теоретическому и практическому подтверждению их при изучении каждого класса веществ.

Основные положения теории химического строения А.М. Бутлерова

1. Атомы в молекулах соединены друг с другом в определенной последовательности согласно их валентностям. Последовательность межатомных связей в молекуле называется ее химическим строением и отражается одной структурной формулой (формулой строения).

2. Химическое строение можно устанавливать химическими методами. (В настоящее время используются также современные физические методы).

3. Свойства веществ зависят от их химического строения.

4. По свойствам данного вещества можно определить строение его молекулы, а по строению молекулы - предвидеть свойства.

5. Атомы и группы атомов в молекуле оказывают взаимное влияние друг на друга.

Теория Бутлерова явилась научным фундаментом органической химии и способствовала быстрому ее развитию. Опираясь на положения теории, А.М. Бутлеров дал объяснение явлению изомерии, предсказал существование различных изомеров и впервые получил некоторые из них.

Развитию теории строения способствовали работы Кекуле, Кольбе, Купера и Вант-Гоффа. Однако их теоретические положения не носили общего характера и служили, главным образом, целям объяснения экспериментального материала.

2. Формулы строения

Формула строения (структурная формула) описывает порядок соединения атомов в молекуле, т.е. ее химическое строение. Химические связи в структурной формуле изображают черточками. Связь между водородом и другими атомами обычно не указывается (такие формулы называются сокращенными структурными формулами).

Например, полная (развернутая) и сокращенная структурные формулы н-бутана C4H10имеют вид:

Другой пример - формулы изобутана.

Часто используется еще более краткая запись формулы, когда не изображают не только связи с атомом водорода, но и символы атомов углерода и водорода. Например, строение бензола C6H6 отражают формулы:

Структурные формулы отличаются от молекулярных (брутто) формул, которые показывают только, какие элементы и в каком соотношении входят в состав вещества (т.е. качественный и количественный элементный состав), но не отражают порядка связывания атомов.

Например, н-бутан и изобутан имеют одну молекулярную формулу C4H10, но разную последовательность связей.

Таким образом, различие веществ обусловлено не только разным качественным и количественным элементным составом, но и разным химическим строением, которое можно отразить лишь структурными формулами.

3. Понятие о изомерии

Еще до создания теории строения были известны вещества одинакового элементного состава, но c разными свойствами. Такие вещества были названы изомерами, а само это явление - изомерией.

В основе изомерии, как показал А.М. Бутлеров, лежит различие в строении молекул, состоящих из одинакового набора атомов. Таким образом,

изомерия - это явление существования соединений, имеющих одинаковый качественный и количественный состав, но различное строение и, следовательно, разные свойства.

Например, при содержании в молекуле 4-х атомов углерода и 10-ти атомов водорода возможно существование 2-х изомерных соединений:

В зависимости от характера отличий в строении изомеров различают структурную и пространственную изомерию.

4. Структурные изомеры

Структурные изомеры - соединения одинакового качественного и количественного состава, отличающиеся порядком связывания атомов, т.е химическим строением.

Например, составу C5H12 соответствует 3 структурных изомера:

Другой пример:

5. Стереоизомеры

Пространственные изомеры (стереоизомеры) при одинаковом составе и одинаковом химическом строении различаются пространственным расположением атомов в молекуле.

Пространственными изомерами являются оптические и цис-транс изомеры (шарики разного цвета обозначают разные атомы или атомные группы):

Молекулы таких изомеров несовместимы в пространстве.

Стереоизомерия играет важную роль в органической химии. Подробнее эти вопросы будут рассматриваться при изучении соединений отдельных классов.

6. Электронные представления в органической химии

Применение электронной теории строения атома и химической связи в органической химии явилось одним из важнейших этапов развития теории строения органических соединений. Понятие о химическом строении как последовательности связей между атомами (А.М. Бутлеров) электронная теория дополнила представлениями обэлектронном и пространственном строении и их влиянии на свойства органических соединений. Именно эти представления дают возможность понять способы передачи взаимного влияния атомов в молекулах (электронные и пространственные эффекты) и поведение молекул в химических реакциях.

Согласно современным представлениям свойства органических соединений определяются:

природой и электронным строением атомов;

типом атомных орбиталей и характером их взаимодействия;

типом химических связей;

химическим, электронным и пространственным строением молекул.

7. Свойства электрона

Электрон имеет двойственную природу. В разных экспериментах он может проявлять свойства как частицы, так и волны. Движение электрона подчиняется законам квантовой механики. Связь между волновыми и корпускулярными свойствами электрона отражает соотношение де Бройля.

Энергию и координаты электрона, как и других элементарных частиц, невозможно одновременно измерить с одинаковой точностью (принцип неопределенностиГейзенберга). Поэтому движение электрона в атоме или в молекуле нельзя описать с помощью траектории. Электрон может находиться в любой точке пространства, но с разной вероятностью.

Часть пространства, в котором велика вероятность нахождения электрона, называют орбиталью или электронным облаком.

Например:

8. Атомные орбитали

Атомная орбиталь (АО) - область наиболее вероятного пребывания электрона (электронное облако) в электрическом поле ядра атома.

Положение элемента в Периодической системе определяет тип орбиталей его атомов (s-, p-, d-, f-АО и т.д.), различающихся энергией, формой, размерами и пространственной направленностью.

Для элементов 1-го периода (Н, He) характерна одна АО - 1s.

В элементах 2-го периода электроны занимают пять АО на двух энергетических уровнях: первый уровень 1s; второй уровень - 2s, 2px, 2py, 2pz. (цифры обозначают номер энергетического уровня, буквы - форму орбитали).

Состояние электрона в атоме полностью описывают квантовые числа.

Химическая природа органических соединений, свойства, отличающие их от соединений неорганических, а также их многообразие нашли объяснение в сформулированной Бутлеровым в 1861 г. теории химического строения (см. § 38).

Согласно этой теории, свойства соединений определяются их качественным и количественным составом, химическим строением, т. е. последовательным порядком соединения между собой образующих молекулу атомов, и их взаимным влиянием. Теория строения органических соединений, развитая и дополненная новейшими воззрениями в области химии и физики атомов и молекул, особенно представлениями о пространственной структуре молекул, о природе химических связей и о характере взаимного влияния атомов, составляет теоретическую основу органической химии.

В современной теории строения органических соединений основными являются следующие положения.

1. Все особенности органических соединений определяются, прежде всего, свойствами элемента углерода.

В соответствии с местом, которое углерод занимает в периодической системе, во внешнем электронном слое его атома (-оболочка) имеются четыре электрона. Он не проявляет выраженной склонности отдавать или присоединять электроны, занимает в этом отношении промежуточное положение между металлами и неметаллами и характеризуется резко выраженной способностью образовывать ковалентные связи. Структура внешнего электронного слоя атома углерода может быть представлена следующими схемами:

Возбужденный атом углерода может участвовать в образовании четырех ковалентных связей. Поэтому в подавляющем большинстве своих соединений углерод проявляет ковалентность, равную четырем.

Так, простейшее органическое соединение углеводород метан имеет состав . Строение его можно изобразить структурой (а) или электронно-структурной (или электронной) (б) формулами:

Электронная формула показывает, что атом углерода в молекуле метана имеет устойчивую восьмиэлектронную внешнюю оболочку (электронный октет), а атомы водорода - устойчивую двухэлектронную оболочку (электронный дублет).

Все четыре ковалентных связи углерода в метане (и в других подобных соединениях) равноценны и симметрично направлены в пространстве. Атом углерода находится как бы в центре тетраэдра (правильной четырехгранной пирамиды), а четыре соединенных с ним атома (в случае метана - четыре атома вершинах тетраэдра (рис. 120). Углы между направлениями любой пары связей (валентные углы углерода) одинаковы и составляют 109° 28".

Это объясняется тем, что в атоме углерода, когда он образует ковалентные связи с четырьмя другими атомами, из одной s- и трех р-орбиталей в результате -гибридизации образуются четыре симметрично расположенные в пространстве гибридные -орбитали, вытянутые в направлении к вершинам тетраэдра.

Рис. 120. Тетраэдрическая модель молекулы метана.

Рис. 121. Схема образования -связей в молекуле метана.

В результате перекрывания -гибридных электронных облаков углерода с электронными облаками других атомов (в метане с шаровыми облаками -электронов атомов водорода) образуются четыре тетраэдрически направленные ковалентные -связи (рис. 121; см. также стр. 131).

Тетраэдрическое строение молекулы метана наглядно выражается ее пространственными моделями - шариковой (рис. 122) или сегментовой (рис. 123). Белые шарики (сегменты) изображают атомы водорода, черные - углерода. Шариковая модель характеризует лишь взаимное пространственное расположение атомов, сегментовая - дает, кроме того, представление об относительных межатомных расстояниях (расстояниях между ядрами . Как показано на рис. 122, структурная формула метана может рассматриваться как проекция его пространственной модели на плоскость чертежа.

2. Исключительным свойством углерода, обусловливающим многообразие органических соединений, является способность его атомов соединяться прочными ковалентными связями друг с другом, образуя углеродные цепи практически неограниченной длины

Валентности атомов углерода, не пошедшие на взаимное соединение, используются для присоединения других атомов или групп (в углеводородах - для присоединения водорода).

Так, углеводороды этан и пропан содержат цепи соответственно из двух и трех атомов углерода.

Рис. 122. Шариковая модель молекулы метана.

Рис. 123. Сегментовая модель молекулы метана.

Строение их выражают следующие структурные и электронные формулы:

Известны соединения, содержащие в цепях сотни и более атомов углерода.

Наращивание углеродной цепи на один атом углерода ведет к увеличению состава на группу . Такое количественное изменение состава приводит к новому соединению, обладающему несколько иными свойствами, т. е. уже качественно отличающемуся от исходного соединения; однако общий характер соединений сохраняется. Так, кроме углеводородов метана , этана , пропана существуют бутан , пентан и т. д. Таким образом, в огромном многообразии органических веществ могут быть выделены ряды однотипных соединений, в которых каждый последующий член отличается от предыдущего на группу . Такие ряды называют гомологическими рядами, их члены по отношению друг к другу являются гомологами, а существование таких рядов называется явлением гомологии.

Следовательно, углеводороды метан, этап, пропан, бутан и т. д. - гомологи одного и того же ряда, который называют рядом предельных, или насыщенных, углеводородов (алканов) или, по первому представителю, - рядом метана.

Вследствие тетраэдрической направленности связей углерода, его атомы, входящие в цепь, располагаются не на прямой, а зигзагообразно, причем, благодаря возможности вращения атомов вокруг оси связи, цепь в пространстве может принимать различные формы (конформации):

Такая структура цепей дает возможность сближаться концевым (б) или другим не смежным атомам углерода (в); в результате возникновения связи между этими атомами углеродные цепи могут замыкаться в кольца (циклы), например:

Таким образом, многообразие органических соединений определяется и тем, что при одинаковом числе атомов углерода в молекуле возможны соединения с открытой, незамкнутой цепью углеродных атомов, а также вещества, молекулы которых содержат циклы (циклические соединения).

3. Ковалентные связи между атомами углерода, образованные одной парой обобщенных электронов, называют простыми (или ординарными) связями.

Связь между атомами углерода может осуществляться не одной, а двумя или тремя общими парами электронов. Тогда получаются цепи с кратными - двойными или тройными связями; эти связи можно изобразить следующим образом:

Простейшие соединения, содержащие кратные связи, - углеводороды этилен (с двойной связью) и ацетилен (с тройной связью):

Углеводороды с кратными связями называются непредельными или ненасыщенными. Этилен и ацетилен - первые представители двух гомологических рядов - этиленовых и ацетиленовых углеводородов.

Рис. 124. Схема образования -связей в молекуле этана.

Простая ковалентная связь (или С: С), образованная перекрыванием двух -гибридных электронных облаков по линии, соединяющей центры атомов (по оси связи), как, например, в этане (рис. 124), представляет собой -связь (см. § 42). Связи также являются -связями - они образуются перекрыванием по оси связи -гибридного облака атома С и шарового облака -электрона атома Н.

Природа кратных углерод-углеродных связей несколько иная. Так, в молекуле этилена при образовании двойной ковалентной связи (или ) в каждом из атомов углерода в гибридизации участвует одна -орбиталь и только две р-орбнтали (-гибридизация); одна из р-орбиталей каждого атома С не гибридизуется. В результате образуются три -гибридных электронных облака, которые участвуют в образовании трех -связей. Всего в молекуле этилена пять связей (четыре и одна ); все они расположены в одной плоскости под углами около 120° друг к другу (рис. 125).

Таким образом, одна из электронных пар в связи осуществляет -связь, а вторая - образуется р-электронами, не участвующими в гибридизации; их облака сохраняют форму объемной восьмерки , ориентированы перпендикулярно к плоскости, в которой расположены -связи, и перекрываются над и под этой плоскостью (рис. 126), образуя -связь (см. § 42).

Рис. 125. Схема образования -связей в молекуле этилена.

Рис. 126. Схема образования -связи в молекуле этилена.

Следовательно, двойная связь С = С представляет собой сочетание одной и одной -связей.

Тройная связь (или ) является сочетанием одной -связи и двух -связей. Например, при образовании молекулы ацетилена в каждом из атомов углерода в гибридизации участвует одна -орбнталь и только одна р-орбиталь (-гибридизация); в результате образуются два -гибридных электронных облака, участвующих в образовании двух -связей. Облака двух р-электронов каждого атома С не гибридизуются, сохраняют свою конфигурацию и участвуют в образовании двух -связей. Таким образом, в ацетилене всего три -связи (одна и две ), направленные вдоль одной прямой, и две -связи, ориентированные в двух взаимно перпендикулярных плоскостях (рис. 127).

Кратные (т. е. двойные и тройные) связи при реакциях легко превращаются в простые; тройная вначале переходит в двойную, а последняя - в простую. Это обусловлено их высокой реакционной способностью и имеет место при присоединении каких-либо атомов к паре атомов углерода, связанных кратной связью.

Переход кратных связей в простые объясняется тем, что обычно -связи обладают меньшей прочностью и поэтому большей лабильностью по сравнению с -связями. При образовании -связей р-электронные облака с параллельными осями перекрываются в значительно меньшей степени, чем электронные облака, перекрывающиеся по оси связи (т. е. гибридные, -электронные или ориентированные вдоль оси связи р-электронные облака).

Рис. 127. Схема образования -связей в молекуле ацетилена.

Рис. 128. Модели молекулы этилена: а - шариковая; б - сегментовая.

Кратные связи прочнее простых. Так, энергия разрыва связи составляет , связи , а связи только .

Из сказанного следует, что в формулах две черточки из трех в связи и одна черточка из двух в связи выражают связи менее прочные, чем простая связь .

На рис. 128 и 129 представлены шариковые и сегментовые пространственные модели соединений с двойной (этилен) и с тройной (ацетилен) связями.

4. Теория строения объяснила многочисленные случаи изомерии органических соединений.

Цепи из атомов углерода могут быть неразветвленными или разветвленными:

Так, состав имеют три предельных углеводорода (пентана) с различным строением цепей - один с неразветвленной цепью (нормального строения) и два с разветвленной (изостроения):

Состав имеют три непредельных углеводорода два нормального строения, но изомерные по положению двойной связи и один - изостроения:

Рис. 129. Модели молекулы ацетилена: а шариковая; б - сегментовая.

Этим непредельным соединениям изомерны два циклических углеводорода, также имеющие состав и изомерные друг другу по величине цикла:

При одном и том же составе соединения могут различаться по строению вследствие различного положения в углеродной цепи и других, не углеродных, атомов, например:

Изомерия может быть обусловлена не только различным порядком соединения атомов. Известно несколько видов пространственной изомерии (стереоизометрии), заключающейся в том, что соответствующие изомеры (стереоизомеры) при одинаковом составе и порядке соединения атомов отличаются различным расположением атомов (или групп атомов) в пространстве.

Так, если в соединении имеется атом углерода, связанный с четырьмя разными атомами или группами атомов (асимметрический атом), то возможны две пространственно-изомерные формы такого соединения. На рис. 130 представлены две тетраэдрические модели молочной кислоты , в которых асимметрический атом углерода (он в формуле помечен звездочкой) находится в центре тетраэдра. Нетрудно заметить, что эти модели невозможно совместить в пространстве: они построены зеркально и отображают пространственную конфигурацию молекул двух различных веществданном примере молочных кислот), отличающихся некоторыми физическими, а главным образом, биологическими свойствами. Такая изомерия называется зеркальной стереоизомерией, а соответствующие изомеры - зеркальными изомерами.

Рис. 130. Тетраэдрические модели молекул зеркальных изомеров молочной кислоты.

Различие в пространственном строении зеркальных изомеров может быть представлено и при помощи структурных формул, в которых показано различное расположение атомных групп при асимметрическом атоме; например, для приведенных на рис. 130 зеркальных изомеров молочной кислоты:

Как уже указано, атомы углерода; соединенные двойной связью, лежат в одной плоскости с четырьмя связями, соединяющими их с другими атомами; углы между направлениями этих связей приблизительно одинаковы (рис. 126). Когда с каждым из атомов углерода при двойной связи соединены различные атомы или группы, возможна так называемая геометрическая стереоизомерия, или цис-транс-изомерия. Примером могут служить пространственные геометрические изомеры дихлорэтилена

В молекулах одного изомера атомы хлора расположены по одну сторону двойной связи, а в молекулах другого - по разные стороны. Первая конфигурация называется цис-, вторая - транс-конфигурацией. Геометрические изомеры отличаются друг от друга по физическим и химическим свойствам.

Существование их обусловлено тем, что двойная связь исключает возможность свободного вращения соединенных атомов вокруг оси связи (такое вращение требует разрыва -связи; см. рис. 126).

5. Взаимное влияние в молекулах органических веществ проявляют прежде всего атомы, непосредственно связанные друг с другом. В этом случае оно определяется характером химической связи между ними, степенью различия в их относительной электроотрицательности и, следовательно, степенью полярности связи.

Например, если судить по суммарным формулам, то в молекуле метана и в молекуле метилового спирта все четыре атома водорода должны обладать одинаковыми свойствами. Но, как будет показано дальше, в метиловом спирте один из атомов водорода способен замещаться щелочным металлом, тогда как в метане атомы водорода такой способности не проявляют. Это объясняется тем, что в спирте атом водорода непосредственно связан не с углеродом, а с кислородом

В приведенных структурных формулах стрелками на черточках связей условно показано смещение пар электронов, образующих ковалентную связь, вследствие различной электроотрицательности, атомов. В метане такое смещение в связи невелико, поскольку электроотрицательность углерода (2,5) лишь незначительно превышает электроотрицательность водорода табл. 6, стр. 118). При этом молекула метана симметрична. В молекуле же спирта связь значительно поляризована, поскольку кислород (электроотрицательность 3,5) гораздо больше оттягивает на себя электронную пару; поэтому атом водорода, соединенный с атомом кислорода, приобретает большую подвижность, т. е. легче отрывается в виде протона.

В органических молекулах имеет значение также взаимное влияние атомов, не связанных друг с другом непосредственно. Так, в метиловом спирте под влиянием кислорода увеличивается реакционная способность не только атома водорода, связанного с кислородом, но и атомов водорода, непосредственно с кислородом не связанных, а соединенных с углеродом. Благодаря этому метиловый спирт довольно легко окисляется, тогда как метан относительно устойчив к действию окислителей. Это объясняется тем, что кислород гидроксильной группы значительно оттягивает на себя пару электронов в связи , соединяющей его с углеродом, электроотрицательность которого меньше.

В результате эффектнвный заряд атома углерода становится более положительным, что вызывает дополнительное смещение пар электронов также и в связях в метиловом спирте, сравни» тельно с теми же связями в молекуле метана. При действии окислителей атомы Н, связанные с тем же атомом углерода, с которым связана группа ОН, значительно легче, чем в углеводородах, отрываются и соединяются с кислородом, образуя воду. При этом атом углерода, связанный с группой ОН, подвергается дальнейшему окислению (см. § 171).

Взаимное влияние атомов, непосредственно друг с другом не связанных, может передаваться на значительное расстояние по цепи атомов углерода и объясняется смещением плотности электронных облаков во всей молекуле под влиянием имеющихся в ней различных по электроотрицательности атомов или групп. Взаимное влияние может передаваться и через пространство, окружающее молекулу, - в результате перекрывания электронных облаков сближающихся атомов.

Тип водорода:

Такие формулы несколько похожи на современные. Но сторонники теории типов не считали их отражающими реальное строение веществ и писали множество различных формул одного соединения в зависимости от химических реакций, которые пытались записать с помощью этих формул. Строение молекул они считали принципиально непознаваемым, что наносило вред развитию науки.

3. Введение Й. Берцелиусом в 1830 г. термина «изомерия » для явления существования веществ одинакового состава, обладающих различными свойствами.

4. Успехи в синтезе органических соединений, в результате которых было развеяно учение о витализме, то есть о «жизненной силе», под влиянием которой якобы в организме живых существ образуются органические вещества:

В 1828 г. Ф. Велер из неорганического вещества (цианата аммония) синтезировал мочевину;

В 1842 г. русский химик Н. Н. Зинин получил анилин;

В 1845 г. немецкий химик А. Кольбе синтезировал уксусную кислоту;

В 1854 г. французский химик М. Бертло синтезировал жиры, и, наконец,

В 1861 г. сам А. М. Бутлеров синтезировал сахароподобное вещество.

5. В середине XVIII в. химия становится более строгой наукой. В результате работ Э. Франкланда и А. Кекуле утвердилось понятие о валентности атомов химических элементов. Кекуле развил представление о четырехвалентности углерода. Благодаря трудам Канниццаро четче стали понятия об атомных и молекулярных массах, уточнены их значения и способы определения.

В 1860 г. более 140 ведущих химиков из разных стран Европы собрались на международный конгресс в г. Карлсруэ. Конгресс стал очень важным событием в истории химии: были обобщены успехи науки и подготовлены условия для нового этапа в развитии органической химии - появления теории химического строения органических веществ А. М. Бутлерова (1861 г.), а также для фундаментального открытия Д. И. Менделеева - Периодического закона и системы химических элементов (1869 г.).

В 1861 г. А. М. Бутлеров выступил на съезде врачей и естествоиспытателей в г. Шпейере с докладом «О химическом строении тел». В нем он изложил основы разработанной им теории химического строения органических соединений. Под химическим строением ученый понимал порядок соединения атомов в молекулах.

Личностные качества А. М. Бутлерова

А. М. Бутлерова отличали энциклопедичность химических знаний, умение анализировать и обобщать факты, прогнозировать. Он предсказал существование изомера бутана, а затем получил его, равно как изомер бутилена - изобутилен.

Бутлеров Александр Михайлович (1828-1886)

Русский химик, академик Петербургской АН (с 1874 г.). Окончил Казанский университет (1849 г.). Работал там же (с 1857 г. - профессор, в 1860 и 1863 гг. - ректор). Создатель теории химического строения органических соединений, лежащей в основе современной химии. Обосновал идею о взаимном влиянии атомов в молекуле. Предсказал и объяснил изомерию многих органических соединений. Написал «Введение к полному изучению органической химии» (1864 г.) - первое в истории науки руководство, основанное на теории химического строения. Председатель Отделения химии Русского физико-химического общества (1878-1882).

А. М. Бутлеров создал первую в России школу химиков-органиков, из которой вышли блестящие ученые: В. В. Марковников, Д. П. Коновалов, А. Е. Фаворский и др.

Недаром Д. И. Менделеев писал: «А. М. Бутлеров - один из величайших русских ученых, он русский и по ученому образованию, и по оригинальности трудов».

Основные положения теории строения химических соединений

Теория химического строения органических соединений, выдвинутая А. М. Бутлеровым во второй половине прошлого века (1861 г.), была подтверждена работами многих ученых, в том числе учениками Бутлерова и им самим. Оказалось возможным на ее основе объяснить многие явления, до той поры не имевшие толкования: изомерию, гомологию, проявление атомами углерода четырехвалентности в органических веществах. Теория выполнила и свою прогностическую функцию: на ее основе ученые предсказывали существование неизвестных еще соединений, описывали свойства и открывали их.

Так, в 1862-1864 гг. А. М. Бутлеров рассмотрел изомерию пропиловых, бутиловых и амиловых спиртов, определил число возможных изомеров и вывел формулы этих веществ. Существование их позднее было экспериментально доказано, причем некоторые из изомеров синтезировал сам Бутлеров.

В течение XX в. положения теории химического строения химических соединений были развиты на основе новых воззрений, распространившихся в науке: теории строения атома, теории химической связи, представлений о механизмах химических реакций. В настоящее время эта теория имеет универсальный характер, то есть справедлива не только для органических веществ, но и для неорганических.

Первое положение. Атомы в молекулах соединяются в определенном порядке в соответствии с их валентностью. Углерод во всех органических и в большинстве неорганических соединений четырехвалентен.

Очевидно, что последнюю часть первого положения теории легко объяснить тем, что в соединениях атомы углерода находятся в возбужденном состоянии:

а) атомы четырехвалентного углерода могут соединяться друг с другом, образуя различные цепи:

Открытые разветвленные
- открытые неразветвленные
- замкнутые

б) порядок соединения атомов углерода в молекулах может быть различным и зависит от вида ковалентной химической связи между атомами углерода - одинарной или кратной (двойной и тройной).

Второе положение. Свойства веществ зависят не только от их качественного и количественного состава, но и от строения их молекул.

Это положение объясняет явление изомерии. Вещества, имеющие одинаковый состав, но разное химическое или пространственное строение, а следовательно, и разные свойства, называют изомерами. Основные виды изомерии:

Структурная изомерия, при которой вещества различаются порядком связи атомов в молекулах:

1) изомерия углеродного скелета

3) изомерия гомологических рядов (межклассовая)

Пространственная изомерия, при которой молекулы веществ отличаются не порядком связи атомов, а положением их в пространстве: цис-транс-изомерия (геометрическая).

Эта изомерия характерна для веществ, молекулы которых имеют плоское строение: алкенов, циклоалканов и др.

К пространственной изомерии относится и оптическая (зеркальная) изомерия.

Четыре одинарные связи вокруг атома углерода, как вы уже знаете, расположены тетраэдрически. Если атом углерода связан с четырьмя различными атомами или группами, то возможно разное расположение этих групп в пространстве, то есть две пространственные изомерные формы.

Две зеркальные формы аминокислоты аланина (2-аминопропановой кислоты) изображены на рисунке 17.

Представьте себе, что молекулу аланина поместили перед зеркалом. Группа -NH2 находится ближе к зеркалу, поэтому в отражении она будет впереди, а группа -СООН - на заднем плане и т. д. (см. изображение справа). Алании существует в двух пространственных формах, которые при наложении не совмещаются одна с другой.

Универсальность второго положения теории строения химических соединений подтверждает существование неорганических изомеров.

Так, первый из синтезов органических веществ - синтез мочевины, проведенный Велером (1828 г.), показал, что изомерны неорганическое вещество - цианат аммония и органическое - мочевина:

Если заменить атом кислорода в мочевине на атом серы, то получится тиомочевина, которая изомерна роданиду аммония, хорошо известному вам реактиву на ионы Fе 3+ . Очевидно, что тиомочевина не дает этой качественной реакции.

Третье положение. Свойства веществ зависят от взаимного влияния атомов в молекулах.

Например, в уксусной кислоте в реакцию со щелочью вступает только один из четырех атомов водорода. На основании этого можно предположить, что только один атом водорода связан с кислородом:

С другой стороны, из структурной формулы уксусной кислоты можно сделать вывод о наличии в ней одного подвижного атома водорода, то есть о ее одноосновности.

Чтобы убедиться в универсальности положения теории строения о зависимости свойств веществ от взаимного влияния атомов в молекулах, которое существует не только у органических, но и у неорганических соединений, сравним свойства атомов водорода в водородных соединениях неметаллов. Они имеют молекулярное строение и в обычных условиях представляют собой газы или летучие жидкости. В зависимости от положения неметалла в Периодической системе Д. И. Менделеева можно выявить закономерность в изменении свойств таких соединений:

Метан не взаимодействует с водой. Отсутствие основных свойств у метана объясняется насыщенностью валентных возможностей атома углерода.

Аммиак проявляет основные свойства. Его молекула способна присоединять к себе ион водорода за счет его притяжения к неподеленной электронной паре атома азота (донорно-акцепторный механизм образования связи).

У фосфина РН3 основные свойства слабо выражены, что связано с радиусом атома фосфора. Он значительно больше радиуса атома азота, поэтому атом фосфора слабее притягивает к себе атом водорода.

В периодах слева направо увеличиваются заряды ядер атомов, уменьшаются радиусы атомов, увеличивается сила отталкивания атома водорода с частичным положительным зарядом §+, а потому кислотные свойства водородных соединений неметаллов усиливаются.

В главных подгруппах сверху вниз увеличиваются радиусы атомов элементов, атомы неметаллов с 5- слабее притягивают атомы водорода с 5+, уменьшается прочность водородных соединений, они легко диссоциируют, а потому их кислотные свойства усиливаются.

Различная способность водородных соединений неметаллов к отщеплению или присоединению катионов водорода в растворах объясняется неодинаковым влиянием, которое оказывает атом неметалла на атомы водорода.

Различным влиянием атомов в молекулах гидроксидов, образованных элементами одного периода, объясняется также изменение их кислотно-основных свойств.

Основные свойства гндроксидов убывают, а кислотные усиливаются, так как увеличивается степень окисления центрального атома, следовательно, растет энергия связи его с атомом кислорода (8-) и отталкивание им атома водорода (8+).

Гидроксид натрия NаОН. Так как у атома водорода радиус очень мал, его сильнее Притягивает к себе атом кислорода и связь между атомами водорода и кислорода будет более прочной, чем между атомами натрия и кислорода. Гидроксид алюминия Аl(0Н)3 проявляет амфотерные свойства.

В хлорной кислоте НСlO 4 атом хлора с относительно большим положительным зарядом прочнее связан с атомом кислорода и сильнее отталкивает от себя атом водорода с 6+. Диссоциация происходит по кислотному типу.

Основные направления развития теории строения химических соединений и ее значение

Во времена А. М. Бутлерова в органической химии широко использовали эмпирические (молекулярные) и структурные формулы. Последние отражают порядок соединения атомов в молекуле согласно их валентности, которая обозначается черточками.

Для простоты записи часто используют сокращенные структурные формулы, в которых черточками обозначают только связи между атомами углерода или углерода и кислорода.

Сокращенные структурные формулы

Затем, по мере развития знаний о природе химической связи и о влиянии электронного строения молекул органических веществ на их свойства, стали пользоваться электронными формулами, в которых ковалентную связь условно обозначают двумя точками. В таких формулах часто показывают направление смещения электронных пар в молекуле.

Именно электронным строением веществ объясняют мезомерный и индукционный эффекты.

Индукционный эффект - смещение электронных пар гамма-связей от одного атома к другому вследствие их разной электроотрицательности. Обозначается (->).

Индукционный эффект атома (или группы атомов) отрицательный (-/), если этот атом имеет большую электроотрицательность (галогены, кислород, азот), притягивает к себе электроны гамма-связи и приобретает при этом частичный отрицательный заряд. Атом (или группа атомов) имеет положительный индукционный эффект (+/), если он отталкивает электроны гамма-связей. Этим свойством обладают некоторые предельные радикалы С2H5). Вспомните правило Марковникова о том, как присоединяется к алкенам (пропену) водород и галоген галогеноводорода и вы поймете, что это правило носит частный характер. Сравните эти два примера уравнений реакций:

[[Теория_строения_химических_соединений_А._М._Бутлерова|]]

В молекулах отдельных веществ проявляются и индукционный, и мезомерный эффекты одновременно. В этом случае они или усиливают друг друга (в альдегидах, карбоновых кислотах), или взаимно ослабляются (в хлорвиниле).

Результатом взаимного влияния атомов в молекулах является перераспределение электронной плотности.

Идею о пространственном направлении химических связей впервые высказали французский химик Ж. А. Ле Бель и голландский химик Я. X. Вант-Гофф в 1874 г. Предположения ученых полностью подтвердила квантовая химия. На свойства веществ значительное влияние оказывает пространственное строение их молекул. Например, мы уже приводили формулы цис- и транс-изомеров бутена-2, которые отличаются по своим свойствам (см. рис. 16).

Средняя энергия связи, которую необходимо разорвать при переходе одной формы в другую, равна примерно 270 кДж/моль; такого большого количества энергии при комнатной температуре нет. Для взаимного перехода форм бутена-2 из одной в другую необходимо одну ковалентную связь разорвать и взамен образовать другую. Иными словами, этот процесс - пример химической реакции, а обе рассмотренные формы бутена-2 представляют собой различные химические соединения.

Вы, очевидно, помните, что важнейшей проблемой при синтезе каучука было получение каучука стереорегулярного строения. Необходимо было создать такой полимер, в котором структурные звенья располагались бы в строгом порядке (натуральный каучук, например, состоит только из цис-звеньев), ведь от этого зависит такое важнейшее свойство каучука, как его эластичность.

Современная органическая химия различает два основных типа изомерии: структурную (изомерию цепи, изомерию положения кратных связей, изомерию гомологических рядов, изомерию положения функциональных групп) и стереоизоме-рию (геометрическую, или цис-транс-изомерию, оптическую, или зеркальную, изомерию).

Итак, вы смогли убедиться в том, что второе положение теории химического строения, четко сформулированное А. М. Бутлеровым, было неполным. С современных позиций это положение требует дополнения:
свойства веществ зависят не только от их качественного и количественного состава, но и от их:

Химического,

Электронного,

Пространственного строения.

Создание теории строения веществ сыграло важнейшую роль в развитии органической химии. Из науки преимущественно описательной она превращается в науку созидательную, синтезирующую, появилась возможность судить о взаимном влиянии атомов в молекулах различных веществ (см. табл. 10). Теория строения создала предпосылки для объяснения и прогнозирования различных видов изомерии органических молекул, а также направлений и механизмов протекания химических реакций.

На основе этой теории химики-органики создают вещества, которые не только заменяют природные, но по своим свойствам значительно их превосходят. Так, синтетические красители гораздо лучше и дешевле многих природных, например известных в древности ализарина и индиго. В больших количествах производят синтетические каучуки с самыми разнообразными свойствами. Широкое применение находят пластмассы и волокна, изделия из которых используют в технике , быту, медицине, сельском хозяйстве.

Значение теории химического строения А. М. Бутлерова для органической химии можно сравнить со значением Периодического закона и Периодической системы химических элементов Д. И. Менделеева для неорганической химии. Недаром в обеих теориях так много общего в путях их становления, направлениях развития и общенаучном значении. Впрочем, в истории любой другой ведущей научной теории (теории Ч. Дарвина, генетике, квантовой теории и т. д.) можно найти такие общие этапы.

1. Установите параллели между двумя ведущими теориями химии - Периодическим законом и Периодической системой химических элементов Д. И. Менделеева и теорией химического строения органических соединений А. М. Бутлерова по следующим признакам: общее в предпосылках, общее в направлениях их развития, общее в прогностической роли.

2. Какую роль сыграла теория строения химических соединений в становлении Периодического закона?

3. Какие примеры из неорганической химии подтверждают универсальность каждого из положений теории строения химических соединений?

4. Фосфористая кислота Н3РО3 относится к двухосновным кислотам. Предложите ее структурную формулу и рассмотрите взаимное влияние атомов в молекуле этой кислоты.

5. Напишите изомеры, имеющие состав С3Н8O. Назовите их по систематической номенклатуре. Определите виды изомерии.

6. Известны следующие формулы кристаллогидратов хлорида хрома(III): [Сг(Н20)6]Сl3; [Сг(Н20)5Сl]Сl2 Н20; [Сг(Н20)4 * С12]Сl 2Н2О. Как вы назовете описанное явление?

Химическая структура молекулы представляет собой наиболее характерную и уникальную ее сторону, поскольку она определяет ее общие свойства (механические, физические, химические и биохимические). Любое изменение в химической структуре молекулы влечет за собой изменение ее свойств. В случае незначительных структурных изменений, внесенных в одну молекулу, следуют небольшие изменения ее свойств (обычно затрагивает физические свойства), если же молекула испытала глубокие структурные изменения, то и ее свойства (особенно химические) будут глубоко изменены.

Например, Альфа-аминопропионовая кислота (Альфа-аланин) имеет следующую структуру:

Альфа-аланин

Что мы видим:

  1. Наличие определенных атомов (С, Н, О, N),
  2. определенное количество атомов, принадлежащих каждому классу, которые связаны в определенном порядке;

Все эти конструктивные особенности определяют целый ряд свойств Альфа-аланина, таких как: твердое агрегатное состояние, температура кипения 295° С, растворимость в воде, оптическая активность, химические свойства аминокислот и т. д.

При наличии связи аминогруппы с другим атомом углерода (т.е. произошло незначительное структурное изменение), что соответствует бета-аланину:

Бета-аланин

Общие химические свойства по-прежнему остаются характерными для аминокислот, но температура кипения составляет уже 200° C и отсутствует оптическая активность.

Если же, например, два атомы в этой молекуле соединены атомом N в следующем порядке (глубокое структурное изменение):

тогда образованное вещество — 1-нитропропан по своим физическим и химическим свойствам совершенно не похож на аминокислоты: 1-нитро-пропан — это желтая жидкость, с температурой кипения 131°С, нерастворим в воде.

Таким образом, взаимосвязь «структура-свойства» позволяет описывать общие свойства вещества с известной структурой и, наоборот, позволяет найти химическую структуру вещества, зная его общие свойства.

Общие принципы теории строения органических соединений

В сущности определения структуры органического соединения, лежат следующие принципы, которые вытекают из связи между их структурой и свойствами:

а) органические вещества, в аналитически чистом состоянии, имеют один и тот же состав, независимо от способа их получения;

б) органические вещества, в аналитически чистом состоянии, обладает постоянными физико-химическими свойствами;

в) органические вещества с постоянным составом и свойствами, имеет только одну уникальную структуру.

В 1861 г. великий русский ученый А. М. Бутлеров в своей статье «О химическом строении вещества» раскрыл основную идею теории химического строения, заключающуюся во влиянии способа связи атомов в органическом веществе на его свойства. Он обобщил все имеющиеся к тому времени знания и представления о строении химических соединений в теории строения органических соединений.

Основные положения теории А. М. Бутлерова

кратко могут быть изложены следующим образом:

  1. В молекуле органического соединения атомы связаны в определенной последовательности, что и определяет его строение.
  2. Атом углерода в составе органических соединений имеет валентность равную четырем.
  3. При одинаковом составе молекулы возможно несколько вариантов соединения атомов этой молекулы между собой. Такие соединения, имеющие один состав, но различное строение были названы изомерами, а подобное явление – изомерией.
  4. Зная строение органического соединения можно предсказать его свойства; зная свойства органического соединения можно предсказать его строение.
  5. Атомы, образующие молекулу подвержены взаимному влиянию, что определяет их реакционную способность. Непосредственно связанные атомы оказывают большее влияние друг на друга, влияние не связанных непосредственно атомов значительно слабее.

Ученик А.М. Бутлерова — В. В. Марковников продолжил изучение вопроса взаимного влияния атомов, что нашло свое отражение в 1869 году в его диссертационной работе «Материалы по вопросу о взаимном влиянии атомов в химических соединениях».

Заслуга А.М. Бутлерова и значение теории химического строения исключительно велико ля химического синтеза. Открылась возможность предсказать основные свойства органических соединений, предвидеть пути их синтеза. Благодаря теории химического строения химики впервые оценили молекулу как упорядоченную систему со строгим порядком связи между атомами. И в настоящее время основные положения теории Бутлерова, несмотря на изменения и уточнения, лежат в основе современных теоретических представлений органической химии.

Категории ,