Квантовая механика физика. Применение квантовой механики

Квантовая механика - это механика микромира. Явления, которые она изучает, в основном лежат за пределами нашего чувственного восприятия, поэтому не следует удивляться кажущейся парадоксальности законов, управляющих этими явлениями.

Основные законы квантовой механики не удается сформулировать как логическое следствие результатов некоторой совокупности фундаментальных физических экспериментов. Иными словами, до сих пор неизвестна формулировка квантовой механики, основанная на системе проверенных на опыте аксиом. Более того, некоторые из основных положений квантовой механики принципиально не допускают опытной проверки. Наша уверенность в справедливости квантовой механики основана на том, что все физические результаты теории согласуются с экспериментом. Таким образом, на опыте проверяются только следствия из основных положений квантовой механики, а не ее основные законы. С этими обстоятельствами связаны, по-видимому, главные трудности, возникающие при первоначальном изучении квантовой механики.

Такого же характера, но, очевидно, гораздо большие трудности стояли перед создателями квантовой механики. Эксперименты со всей определенностью указывали на существование особых квантовых закономерностей в микромире, но ни в коей мере не подсказывали форму квантовой теории. Этим можно объяснить поистине драматическую историю создания квантовой механики и, в частности, тот факт, что первоначальные формулировки квантовой механики носили чисто рецептурный характер. Они содержали некоторые правила, позволяющие вычислять измеряемые на опыте величины, а физическое истолкование теории появилось после того, как в основном был создан ее математический формализм.

При построении квантовой механики в настоящем курсе мы не будем следовать историческому пути. Мы очень коротко опишем ряд физических явлений, попытки объяснить которые на основе законов классической физики приводили к непреодолимым трудностям. Далее мы попытаемся выяснить, какие черты описанной в предыдущих параграфах схемы классической механики должны сохраниться в механике микромира и от чего можно и нужно отказаться. Мы увидим, что отказ только от одного утверждения классической механики, а именно от утверждения, что наблюдаемые есть функции на фазовом пространстве, позволит построить схему механики, описывающую системы с поведением, существенно отличным от классического. Наконец, в последующих параграфах мы убедимся, что построенная теория является более общей, чем классическая механика, и содержит последнюю как предельный случай.

Исторически первая квантовая гипотеза была выдвинута Планком в 1900 г. в связи с теорией равновесного излучения. Планку удалось получить согласующуюся с опытом формулу для спектрального распределения энергии теплового излучения, выдвинув предположение о том, что электромагнитное излучение испускается и поглощается дискретными порциями - квантами, энергия которых пропорциональна частоте излучения

где - частота колебаний в световой волне, - постоянная Планка.

Гипотеза Планка о световых квантах позволила Эйнштейну дать чрезвычайно простое объяснение закономерностей фотоэффекта (1905 г.). Явление фотоэффекта состоит в том, что под действием светового потока из металла выбиваются электроны. Основная задача теории фотоэффекта - найти зависимость энергии выбиваемых электронов от характеристик светового потока. Пусть V - работа, которую нужно затратить на выбивание электрона из металла (работа выхода). Тогда закон сохранения энергии приводит к соотношению

где Т - кинетическая энергия выбитого электрона. Мы видим, что эта энергия линейно зависит от частоты и не зависит от интенсивности светового потока. Кроме того, при частоте (красная граница фотоэффекта) явление фотоэффекта становится невозможным, так как . Эти выводы, основанные на гипотезе о световых квантах, полностью согласуются с опытом. В то же время по классической теории энергия вырванных электронов должна зависеть от интенсивности световых волн, что противоречит результатам экспериментов.

Эйнштейн дополнил представление о световых квантах, введя импульс светового кванта по формуле

Здесь k - так называемый волновой вектор, имеющий направление распространения световых волн; длина этого вектора k связана с длиной волны , частотой и скоростью света с соотношениями

Для световых квантов справедлива формула

являющаяся частным случаем формулы теории относительности

для частицы с массой покоя .

Заметим, что исторически первые квантовые гипотезы относились к законам излучения и поглощения световых волн, т. е. к электродинамике, а не к механике. Однако вскоре стало ясно, что не только для электромагнитного излучения, но и для атомных систем характерна дискретность значений ряда физических величин. Опыты Франка и Герца (1913 г.) показали, что при столкновениях электронов с атомами энергия электронов изменяется дискретными порциями. Результаты этих опытов можно объяснить тем, что энергия атомов может иметь только определенные дискретные значения. Позднее, в 1922 г. опыты Штерна и Герлаха показали, что аналогичным свойством обладает проекция момента количества движения атомных систем на некоторое направление. В настоящее время хорошо известно, что дискретность значений ряда наблюдаемых хотя и характерная, но не обязательная черта систем микромира. Так, например, энергия электрона в атоме водорода имеет дискретные значения, а энергия свободно движущегося электрона может принимать любые положительные значения. Математический аппарат квантовой механики должен быть приспособлен к описанию наблюдаемых, принимающих как дискретные, так и непрерывные значения.

В 1911 г. Резерфордом было открыто атомное ядро и предложена планетарная модель атома (опыты Резерфорда по рассеянию а-частиц на образцах из различных элементов показали, что атом имеет положительно заряженное ядро, заряд которого равен - номер элемента в таблице Менделеева, а - заряд электрона, размеры ядра не превышают сами атомы имеют линейные размеры порядка см). Планетарная модель атома противоречит основным положениям классической электродинамики. Действительно, двигаясь вокруг ядра по классическим орбитам, электроны, как всякие ускоренно движущиеся заряды, должны излучать электромагнитные волны. При этом электроны должны терять свою энергию и в конце концов упасть на ядро. Поэтому такой атом не может быть устойчивым, что, конечно, не соответствует действительности. Одна из основных задач квантовой механики - объяснить устойчивость и описать структуру атомов и молекул как систем, состоящих из положительно заряженных ядер и электронов.

Совершенно удивительным с точки зрения классической механики представляется явление дифракции микрочастиц. Это явление было предсказано де Бройлем в 1924 г., который предположил, что свободно движущейся частице с импульсом р

и энергией Е в каком-то смысле соответствует волна с волновым вектором k и частотой , причем

т. е. соотношения (1) и (2) справедливы не только для световых квантов, но и для частиц. Физическое истолкование волн де Бройля было дано позднее Борном, и мы его пока обсуждать не будем. Если движущейся частице соответствует волна, то независимо от того, какой точный смысл вкладывается в эти слова, естественно ожидать, что это проявится в существовании дифракционных явлений для частиц. Впервые дифракция электронов наблюдалась в опытах Девиссона и Джермера в 1927 г. Впоследствии явления дифракции наблюдались и для других частиц.

Покажем, что дифракционные явления несовместимы с классическими представлениями о движении частиц по траекториям. Рассуждение удобнее всего провести на примере мысленного эксперимента по дифракции пучка электронов на двух щелях, схема которого изображена на рис. 1. Пусть электроны от источника А двигаются к экрану Б и, проходя через щели и в нем, попадают на экран В.

Нас интересует распределение электронов по координате у, попадающих на экран В. Явления дифракции на одной и двух щелях хорошо изучены, и мы можем утверждать, что распределение электронов имеет вид а, изображенный на рис. 2, если открыта только первая щель, вид (рис. 2), - если открыта вторая и вид в, - если открыты обе щели. Если предположить, что каждый электрон двигался по определенной классической траектории, то все электроны, попавшие на экран В, можно разбить на две группы в зависимости от того, через какую щель они прошли. Для электронов первой группы совершенно безразлично, открыта ли вторая щель, и поэтому их

распределение на экране должно изображаться кривой а; аналогично электроны второй группы должны иметь распределение . Поэтому в случае, когда открыты обе щели, на экране должно получиться распределение, являющееся суммой распределений а и б. Такая сумма распределений не имеет ничего общего с интерференционной картиной в. Это противоречие показывает, что разделение электронов на группы по тому признаку, через какую щель они прошли, в условиях описанного эксперимента невозможно, а значит, мы вынуждены отказаться от понятия траектории.

Сразу же возникает вопрос, а можно ли так поставить эксперимент, чтобы выяснить, через какую щель проходил электрон. Разумеется, такая постановка эксперимента возможна, для этого достаточно поместить источник света между экранами и Б и наблюдать рассеяние световых квантов на электронах. Для того чтобы добиться достаточного разрешения, мы должны использовать кванты с длиной волны, по порядку не превосходящей расстояния между щелями, т. е. с достаточно большой энергией и импульсом. Наблюдая кванты, рассеянные на электронах, мы действительно сможем определить, через какую щель прошел электрон. Однако взаимодействие квантов с электронами вызовет неконтролируемое изменение их импульсов, а следовательно, распределение электронов, попавших на экран, должно измениться. Таким образом, мы приходим к выводу, что ответить на вопрос, через какую щель прошел электрон, можно только за счет изменения как условий, так и окончательного результата эксперимента.

На этом примере мы сталкиваемся со следующей общей особенностью поведения квантовых систем. Экспериментатор не имеет возможности следить за ходом эксперимента, так как это приводит к изменению его окончательного результата. Эта особенность квантового поведения тесно связана с особенностями измерений в микромире. Всякое измерение возможно только при взаимодействии системы с измерительным прибором. Это взаимодействие приводит к возмущению движения системы. В классической физике всегда предполагается, что

это возмущение может быть сделано сколь угодно малым, так же как и длительность процесса измерения. Поэтому всегда возможно одновременное измерение любого числа наблюдаемых.

Детальный анализ процесса измерения некоторых наблюдаемых для микросистем, который можно найти во многих учебниках по квантовой механике, показывает, что с увеличением точности измерения наблюдаемых воздействие на систему увеличивается и измерение вносит неконтролируемые изменения в численные значения некоторых других наблюдаемых. Это приводит к тому, что одновременное точное измерение некоторых наблюдаемых становится принципиально невозможным. Например, если для измерения координаты частицы использовать рассеяние световых квантов, то погрешность такого измерения имеет порядок длины волны света . Повысить точность измерения можно, выбирая кванты с меньшей длиной волны, а следовательно, с большим импульсом . При этом в численные значения импульса частицы вносится неконтролируемое изменение порядка импульса кванта. Поэтому погрешности измерения координаты и импульса связаны соотношением

Более точное рассуждение показывает, что это соотношение связывает только одноименные координату и проекцию импульса. Соотношения, связывающие принципиально возможную точность одновременного измерения двух наблюдаемых, называются соотношениями неопределенности Гейзенберга. В точной формулировке они будут получены в следующих параграфах. Наблюдаемые, на которые соотношения неопределенности не накладывают никаких ограничений, являются одновременно измеримыми. Мы увидим в дальнейшем, что одновременно измеримыми являются декартовы координаты частицы или проекции импульса, а неизмеримыми одновременно - одноименные координаты и проекция импульса или две декартовы проекции момента количества движения. При построении квантовой механики мы должны помнить о возможности существования неизмеримых одновременно величин.

Теперь после небольшого физического вступления попытаемся ответить на уже поставленный вопрос: какие особенности классической механики следует сохранить и от чего естественно отказаться при построении механики микромира. Основными понятиями классической механики были понятия наблюдаемой и состояния. Задача физической теории-предсказание результатов экспериментов, а эксперимент всегда есть измерение некоторой характеристики системы или наблюдаемой при определенных условиях, которые определяют состояние системы. Поэтому понятия наблюдаемой и состояния должны появиться

в любой физической теории. С точки зрения экспериментатора определить наблюдаемую - значит задать способ ее измерения. Наблюдаемые мы будем обозначать символами а, b, с,... и пока не будем делать никаких предположений об их математической природе (напомним, что в классической механике наблюдаемые есть функции на фазовом пространстве). Множество наблюдаемых, как и прежде, мы будем обозначать через .

Разумно предположить, что условия эксперимента определяют по крайней мере вероятностные распределения результатов измерения всех наблюдаемых, поэтому определение состояния, данное в § 2, разумно сохранить. Состояния по-прежнему мы будем обозначать через соответствующую наблюдаемой а вероятностную меру на действительной оси через функцию распределения наблюдаемой а в состоянии через и, наконец, среднее значение наблюдаемой а в состоянии через .

Теория должна содержать определение функции от наблюдаемой. Для экспериментатора утверждение, что наблюдаемая b есть функция от наблюдаемой а означает, что для измерения b достаточно измерить а, и, если в результате измерения наблюдаемой а получится число , то численное значение наблюдаемой b есть . Для соответствующих а и вероятностных мер справедливо равенство

для любых состояний .

Заметим, что всевозможные функции от одной наблюдаемой а измеримы одновременно, так как для измерения этих наблюдаемых достаточно измерить наблюдаемую а. В дальнейшем мы увидим, что в квантовой механике этим примером исчерпываются случаи одновременной измеримости наблюдаемых, т. е. если наблюдаемые измеримы одновременно, то найдется такая наблюдаемая а и такие функции , что .

Среди множества функций наблюдаемой а, очевидно, определены , где - вещественное число. Существование первой из этих функций показывает, что наблюдаемые можно умножать на вещественные числа. Утверждение, что наблюдаемая есть константа подразумевает, что ее численное значение в любом состоянии совпадает с этой константой.

Попытаемся теперь выяснить, какой смысл можно придать сумме и произведению наблюдаемых. Эти операции были бы определены, если бы у нас было определение функции от двух наблюдаемых Здесь, однако, возникают принципиальные трудности, связанные с возможностью существования неизмеримых одновременно наблюдаемых. Если а и b

измеримы одновременно, то определение совершенно аналогично определению . Для измерения наблюдаемой достаточно измерить наблюдаемые а и b, и такое измерение приведет к численному значению , где - численные значения наблюдаемых а и b соответственно. Для случая неизмеримых одновременно наблюдаемых а и b не существует никакого разумного определения функции . Это обстоятельство заставляет нас отказаться от предположения, что наблюдаемые есть функции на фазовом пространстве , так как у нас есть физические основания считать q и р неизмеримыми одновременно и искать наблюдаемые среди математических объектов иной природы.

Мы видим, что определить сумму и произведение используя понятие функции от двух наблюдаемых, можно только в том случае, если они одновременно измеримы. Однако возможен другой подход, позволяющий ввести сумму в общем случае. Мы знаем, что вся информация о состояниях и наблюдаемых получается в результате измерений, поэтому разумно предположить, что состояний достаточно много, чтобы по ним можно было различать наблюдаемые, и аналогично наблюдаемых достаточно много, чтобы по ним можно было различать состояния.

Более точно мы предполагаем, что из равенства

справедливого для любого состояния а, следует, что наблюдаемые а и b совпадают а из равенства

справедливого для любой наблюдаемой а, следует, что совпадают СОСТОЯНИЯ и .

Первое из сделанных предположений дает возможность определить сумму наблюдаемых как такую наблюдаемую, для которой справедливо равенство

при любом состоянии а. Сразу заметим, что это равенство является выражением известной теоремы теории вероятностей о среднем значении суммы только в случае, когда наблюдаемые а и b имеют общую функцию распределения. Такая общая функция распределения может существовать (и в квантовой механике действительно существует) только для одновременно измеримых величин. В этом случае определение суммы по формуле (5) совпадает со сделанным прежде. Аналогичное определение произведения невозможно, так как среднее от произведения

не равно произведению средних даже для одновременно измеримых наблюдаемых.

Определение суммы (5) не содержит никакого указания на способ измерения наблюдаемой по известным способам измерения наблюдаемых а и b и в этом смысле является неявным.

Чтобы дать представление о том, насколько понятие суммы наблюдаемых может отличаться от обычного понятия суммы случайных величин, мы приведем пример наблюдаемой, которая будет подробно изучена в дальнейшем. Пусть

Наблюдаемая Н (энергия одномерного гармонического осциллятора) есть сумма двух наблюдаемых, пропорциональных квадратам импульса и координаты. Мы увидим, что эти последние наблюдаемые могут принимать любые неотрицательные численные значения, в то время как значения наблюдаемой Н должны совпадать с числами где , т. е. наблюдаемая Н с дискретными численными значениями является суммой наблюдаемых с непрерывными значениями.

Фактически все наши предположения сводятся к тому, что при построении квантовой механики разумно сохранить структуру алгебры наблюдаемых классической механики, но следует отказаться от реализации этой алгебры функциями на фазовом пространстве, так как мы допускаем существование неизмеримых одновременно наблюдаемых.

Наша ближайшая задача - убедиться в том, что существует реализация алгебры наблюдаемых, отличная от реализации классической механики. В следующем параграфе мы приведем пример такой реализации, построив конечномерную модель квантовой механики. В этой модели алгебра наблюдаемых есть алгебра самосопряженных операторов в -мерном комплексном пространстве . Изучая эту упрощенную модель, мы сумеем проследить за основными особенностями квантовой теории. В то же время, дав физическое толкование построенной модели, мы увидим, что она слишком бедна, чтобы соответствовать действительности. Поэтому конечномерную модель нельзя рассматривать как окончательный вариант квантовой механики. Однако усовершенствование этой модели - замена на комплексное гильбертово пространство будет представляться весьма естественным.

Под квантовой механикой понимают физическую теорию динамического поведения форм излучения и вещества. Это на которой построена современная теория физических тел, молекул и элементарных частиц. Вообще, квантовая механика была создана учеными, которые стремились понять строение атома. В течении многих годов легендарные физики изучали особенности и направления химии и следовали историческому времени развития событий.

Такое понятие, как квантовая механика, зарождалось в течение долгих лет. В 1911 году ученые Н. Бор и предложили ядерную модель атома, которая напоминала модель Коперника с его солнечной системой. Ведь солнечная система имела в своем центре ядро, вокруг которого вращались элементы. На основе этой теории начались расчеты физических и химических свойств некоторых веществ, которые были построены из простых атомов.

Одним из важных вопросов в такой теории, как квантовая механика - это природа сил, которая связывала атом. Благодаря закону Кулона, Э. Резерфорд показал, что данный закон справедлив в огромных масштабах. Затем необходимо было определить, каким образом электроны движутся по своей орбите. В этом пункте помог

На самом деле, квантовая механика нередко противоречит таким понятиям, как здравый смысл. Наряду с тем, что наш здравый смысл действует и показывает только такие вещи, которые можно взять из повседневного опыта. А, в свою очередь, повседневный опыт имеет дело только с явлениями макромира и крупными объектами, в то время как материальные частицы на субатомном и атомарном уровне ведут себя совсем по-другому. Например, в макромире мы с легкостью способны определить нахождение любого объекта при помощи измерительных приборов и методов. А если мы будем измерять координаты микрочастицы электрона, то пренебречь взаимодействием объекта измерения и измерительного прибора просто недопустимо.

Другими словами можно сказать, что квантовая механика представляет собой физическую теорию, которая устанавливает законы движения различных микрочастиц. От классической механики, которая описывает движение микрочастиц, квантовая механика отличается двумя показателями:

Вероятный характер некоторых физических величин, например, скорость и положение микрочастицы определить точно невозможно, можно рассчитать только вероятность их значений;

Дискретное изменение например, энергия какой-либо микрочастицы имеет только определенные некоторые значения.

Квантовая механика еще сопряжена с таким понятием, как квантовая криптография , которая представляет собой быстроразвивающуюся технологию, способную изменить мир. Квантовая криптография направлена на то, чтобы защитить коммуникации и секретность информации. Основана эта криптография на определенных явлениях и рассматривает такие случаи, когда информация может переноситься при помощи объектом квантовой механики. Именно здесь с помощью электронов, фотонов и других физических средств определяется процесс приема и отправки информации. Благодаря квантовой криптографии можно создать и спроектировать систему связи, которая может обнаружить подслушивание.

На сегодняшний момент достаточно много материалов, где предлагается изучение такого понятия, как квантовая механика основы и направления, а также деятельности квантовой криптографии. Чтобы обрести знания в этой непростой теории, необходимо досконально изучать и вникать в эту область. Ведь квантовая механика - это далеко не легкое понятие, которое изучалось и доказывалось величайшими учеными многими годами.

Если Вы вдруг поняли, что подзабыли основы и постулаты квантовой механики или вообще не знаете, что это за механика такая, то самое время освежить в памяти эту информацию. Ведь никто не знает, когда квантовая механика может пригодиться в жизни.

Зря вы усмехаетесь и ехидствуете, думая, что уж с этим предметом вам в жизни вообще никогда не придется сталкиваться. Ведь квантовая механика может быть полезной практически каждому человеку, даже бесконечно далекому от нее. Например, у Вас бессонница. Для квантовой механики это не проблема! Почитайте перед сном учебник – и Вы спите крепчайшим сном странице уже эдак на третьей. Или можете назвать так свою крутую рок группу. Почему бы и нет?

Шутки в сторону, начинаем серьезный квантовый разговор.

С чего начать? Конечно, с того, что такое квант.

Квант

Квант (от латинского quantum – ”сколько”) – это неделимая порция какой-то физической величины. Например, говорят - квант света, квант энергии или квант поля.

Что это значит? Это значит, что меньше быть уже просто не может. Когда говорят о том, что какая-то величина квантуется, понимают, что данная величина принимает ряд определенных, дискретных значений. Так, энергия электрона в атоме квантуется, свет распространяется «порциями», то есть квантами.

Сам термин «квант» имеет множество применений. Квантом света (электромагнитного поля) является фотон. По аналогии квантами называются частицы или квазичастицы, соответствующие иным полям взаимодействия. Здесь можно вспомнить про знаменитый бозон Хиггса, который является квантом поля Хиггса. Но в эти дебри мы пока не лезем.


Квантовая механика для "чайников"

Как механика может быть квантовой?

Как Вы уже заметили, в нашем разговоре мы много раз упоминали о частицах. Возможно, Вы и привыкли к тому, что свет – это волна, которая просто распространяется со скоростью с . Но если посмотреть на все с точки зрения квантового мира, то есть мира частиц, все изменяется до неузнаваемости.

Квантовая механика – это раздел теоретической физики, составляющая квантовой теории, описывающая физические явления на самом элементарном уровне – уровне частиц.

Действие таких явлений по величине сравнимо с постоянной Планка, а классическая механика Ньютона и электродинамика оказались совершенно непригодными для их описания. Например, согласно классической теории электрон, вращаясь с большой скоростью вокруг ядра, должен излучать энергию и в конце концов упасть на ядро. Этого, как известно, не происходит. Именно поэтому и придумали квантовую механику – открытые явления нужно было как-то объяснить, и она оказалась именно той теорией, в рамках которой объяснение было наиболее приемлемым, а все экспериментальные данные "сходились".


Кстати! Для наших читателей сейчас действует скидка 10% на

Немного истории

Зарождение квантовой теории произошло в 1900 году, когда Макс Планк выступил на заседании немецкого физического общества. Что тогда сообщил Планк? А то, что излучение атомов дискретно, а наименьшая порция энергии этого излучения равна

Где h - постоянная Планка, ню - частота.

Затем Альберт Эйнштейн, введя понятие “квант света” использовал гипотезу Планка для объяснения фотоэффекта. Нильс Бор постулировал существование у атома стационарных энергетических уровней, а Луи де Бройль развил идею о корпускулярно-волновом дуализме, то есть о том, что частица (корпускула) обладает также и волновыми свойствами. К делу присоединились Шредингер и Гейзенберг, и вот, в 1925 году публикуется первая формулировка квантовой механики. Собственно, квантовая механика – далеко не законченная теория, она активно развивается и в настоящее время. Также следует признать, что квантовая механика с ее допущениями не имеет возможности объяснить все стоящие перед ней вопросы. Вполне возможно, что на смену ей придет более совершенная теория.


При переходе от мира квантового к миру привычных нам вещей законы квантовой механики естественным образом трансформируются в законы механики классической. Можно сказать, что классическая механика – это частный случай квантовой механики, когда действие имеет место быть в нашем с Вами привычном и родном макромире. Здесь тела спокойно движутся в неинерциальных системах отсчета со скоростью, гораздо меньшей скорости света, и вообще - все вокруг спокойно и понятно. Хочешь узнать положение тела в системе координат – нет проблем, хочешь измерить импульс – всегда пожалуйста.

Совершенно иной подход к вопросу имеет квантовая механика. В ней результаты измерений физических величин носят вероятностный характер. Это значит, что при изменении какой-то величины возможно несколько результатов, каждому из которых соответствует определенная вероятность. Приведем пример: монетка крутится на столе. Пока она крутится, она не находится в каком-то определенном состоянии (орел-решка), а имеет лишь вероятность в одном из этих состояний оказаться.

Здесь мы плавно подходим к уравнению Шредингера и принципу неопределенности Гейзенберга .

Согласно легенде Эрвин Шредингер, в 1926 году выступая на одном научном семинаре с докладом на тему корпускулярно-волнового дуализма, был подвергнут критике со стороны некоего старшего ученого. Отказавшись слушать старших, Шредингер после этого случая активно занялся разработкой волнового уравнения для описания частиц в рамках квантовой механики. И справился блестяще! Уравнение Шредингера (основное уравнение квантовой механики) имеет вид:

Данный вид уравнения – одномерное стационарное уравнение Шредингера – самый простой.

Здесь x - расстояние или координата частицы, m - масса частицы, E и U - соответственно ее полная и потенциальная энергии. Решение этого уравнения – волновая функция (пси)

Волновая функция – еще одно фундаментальное понятие в квантовой механике. Так, у любой квантовой системы, находящейся в каком-то состоянии, есть волновая функция, описывающая данное состояние.

Например, при решении одномерного стационарного уравнения Шредингера волновая функция описывает положение частицы в пространстве. Точнее говоря, вероятность нахождения частицы в определенной точке пространства. Иными словами, Шредингер показал, что вероятность может быть описана волновым уравнением! Согласитесь, до этого нужно было додуматься!


Но почему? Почему мы должны иметь дело с этими непонятными вероятностями и волновыми функциями, когда, казалось бы, нет ничего проще, чем просто взять и измерить расстояние до частицы или ее скорость.

Все очень просто! Ведь в макромире это действительно так – мы с определенной точностью измеряем расстояние рулеткой, а погрешность измерения определяется характеристикой прибора. С другой стороны, мы можем практически безошибочно на глаз определить расстояние до предмета, например, до стола. Во всяком случае, мы точно дифференцируем его положение в комнате относительно нас и других предметов. В мире же частиц ситуация принципиально иная – у нас просто физически нет инструментов измерения, чтобы с точностью измерить искомые величины. Ведь инструмент измерения вступает в непосредственный контакт с измеряемым объектом, а в нашем случае и объект, и инструмент – это частицы. Именно это несовершенство, принципиальная невозможность учесть все факторы, действующие на частицу, а также сам факт изменения состояния системы под действием измерения и лежат в основе принципа неопределенности Гейзенберга.

Приведем самую простую его формулировку. Представим, что есть некоторая частица, и мы хотим узнать ее скорость и координату.

В данном контексте принцип неопределенности Гейзенберга гласит: невозможно одновременно точно измерить положение и скорость частицы . Математически это записывается так:

Здесь дельта x - погрешность определения координаты, дельта v - погрешность определения скорости. Подчеркнем – данный принцип говорит о том, что чем точнее мы определим координату, тем менее точно будем знать скорость. А если определим скорость, не будем иметь ни малейшего понятия о том, где находится частица.

На тему принципа неопределенности существует множество шуток и анекдотов. Вот один из них:

Полицейский останавливает квантового физика.
- Сэр, Вы знаете, с какой скоростью двигались?
- Нет, зато я точно знаю, где я нахожусь


И, конечно, напоминаем Вам! Если вдруг по какой-то причине решение уравнения Шредингера для частицы в потенциальной яме не дает Вам уснуть, обращайтесь к – профессионалам, которые были взращены с квантовой механикой на устах!

Слово «квант» происходит от латинского quantum («сколько, как много») и английского quantum («количество, порция, квант»). «Механикой» издавна принято называть науку о движении материи. Соответственно, термин «квантовая механика» означает науку о движении материи порциями (или, выражаясь современным научным языком науку о движении квантующейся материи). Термин «квант» ввел в обиход немецкий физик Макс Планк (см. Постоянная Планка) для описания взаимодействия света с атомами.

Квантовая механика часто противоречит нашим понятиям о здравом смысле. А всё потому, что здравый смысл подсказывает нам вещи, которые берутся из повседневного опыта, а в своем повседневном опыте нам приходится иметь дело только с крупными объектами и явлениями макромира, а на атомарном и субатомном уровне материальные частицы ведут себя совсем иначе. Принцип неопределенности Гейзенберга как раз и очерчивает смысл этих различий. В макромире мы можем достоверно и однозначно определить местонахождение (пространственные координаты) любого объекта (например, этой книги). Не важно, используем ли мы линейку, радар, сонар, фотометрию или любой другой метод измерения, результаты замеров будут объективными и не зависящими от положения книги (конечно, при условии вашей аккуратности в процессе замера). То есть некоторая неопределенность и неточность возможны — но лишь в силу ограниченных возможностей измерительных приборов и погрешностей наблюдения. Чтобы получить более точные и достоверные результаты, нам достаточно взять более точный измерительный прибор и постараться воспользоваться им без ошибок.

Теперь если вместо координат книги нам нужно измерить координаты микрочастицы, например электрона, то мы уже не можем пренебречь взаимодействиями между измерительным прибором и объектом измерения. Сила воздействия линейки или другого измерительного прибора на книгу пренебрежимо мала и не сказывается на результатах измерений, но чтобы измерить пространственные координаты электрона, нам нужно запустить в его направлении фотон, другой электрон или другую элементарную частицу сопоставимых с измеряемым электроном энергий и замерить ее отклонение. Но при этом сам электрон, являющийся объектом измерения, в результате взаимодействия с этой частицей изменит свое положение в пространстве. Таким образом, сам акт замера приводит к изменению положения измеряемого объекта, и неточность измерения обусловливается самим фактом проведения измерения, а не степенью точности используемого измерительного прибора. Вот с какой ситуацией мы вынуждены мириться в микромире. Измерение невозможно без взаимодействия, а взаимодействие — без воздействия на измеряемый объект и, как следствие, искажения результатов измерения.

О результатах этого взаимодействия можно утверждать лишь одно:

неопределенность пространственных координат × неопределенность скорости частицы > h /m ,

или, говоря математическим языком:

Δx × Δv > h /m

где Δx и Δv — неопределенность пространственного положения и скорости частицы соответственно, h — постоянная Планка , а m — масса частицы.

Соответственно, неопределенность возникает при определении пространственных координат не только электрона, но и любой субатомной частицы, да и не только координат, но и других свойств частиц — таких как скорость. Аналогичным образом определяется и погрешность измерения любой такой пары взаимно увязанных характеристик частиц (пример другой пары — энергия, излучаемая электроном, и отрезок времени, за который она испускается). То есть если нам, например, удалось с высокой точностью измерили пространственное положение электрона, значит мы в этот же момент времени имеем лишь самое смутное представление о его скорости, и наоборот. Естественно, при реальных измерениях до этих двух крайностей не доходит, и ситуация всегда находится где-то посередине. То есть если нам удалось, например, измерить положение электрона с точностью до 10 -6 м, значит мы одновременно можем измерить его скорость, в лучшем случае, с точностью до 650 м/с.

Из-за принципа неопределенности описание объектов квантового микромира носит иной характер, нежели привычное описание объектов ньютоновского макромира. Вместо пространственных координат и скорости, которыми мы привыкли описывать механическое движение, например шара по бильярдному столу, в квантовой механике объекты описываются так называемой волновой функцией. Гребень «волны» соответствует максимальной вероятности нахождения частицы в пространстве в момент измерения. Движение такой волны описывается уравнением Шрёдингера , которое и говорит нам о том, как изменяется со временем состояние квантовой системы.

Картина квантовых событий в микромире, рисуемая уравнением Шрёдингера, такова, что частицы уподобляются отдельным приливным волнам, распространяющимся по поверхности океана-пространства. Со временем гребень волны (соответствующий пику вероятности нахождения частицы, например электрона, в пространстве) перемещается в пространстве в соответствии с волновой функцией, являющейся решением этого дифференциального уравнения. Соответственно, то, что нам традиционно представляется частицей, на квантовом уровне проявляет ряд характеристик, свойственных волнам.

Согласование волновых и корпускулярных свойств объектов микромира (см. Соотношение де Бройля) стало возможным после того, как физики условились считать объекты квантового мира не частицами и не волнами, а чем-то промежуточным и обладающим как волновыми, так и корпускулярными свойствами; в ньютоновской механике аналогов таким объектам нет. Хотя и при таком решении парадоксов в квантовой механике всё равно хватает (см. Теорема Белла), лучшей модели для описания процессов, происходящих в микромире, никто до сих пор не предложил.

Квантовая механика
Δ x ⋅ Δ p x ⩾ ℏ 2 {\displaystyle \Delta x\cdot \Delta p_{x}\geqslant {\frac {\hbar }{2}}}
Введение
Математические основы
См. также: Портал:Физика

Ква́нтовая меха́ника - раздел теоретической физики , описывающий физические явления, в которых действие сравнимо по величине с постоянной Планка . Предсказания квантовой механики могут существенно отличаться от предсказаний классической механики . Поскольку постоянная Планка является чрезвычайно малой величиной по сравнению с действием объектов при макроскопическом движении, квантовые эффекты в основном проявляются в микроскопических масштабах. Если физическое действие системы намного больше постоянной Планка, квантовая механика органически переходит в классическую механику. В свою очередь, квантовая механика является нерелятивистским приближением (то есть приближением малых энергий по сравнению с энергией покоя массивных частиц системы) квантовой теории поля .

Классическая механика, хорошо описывающая системы макроскопических масштабов, не способна описать все явления на уровне молекул , атомов , электронов и фотонов . Квантовая механика адекватно описывает основные свойства и поведение атомов, ионов , молекул, конденсированных сред и других систем с электронно-ядерным строением. Квантовая механика также способна описывать: поведение электронов, фотонов, а также других элементарных частиц , однако более точное релятивистски инвариантное описание превращений элементарных частиц строится в рамках квантовой теории поля. Эксперименты подтверждают результаты, полученные с помощью квантовой механики.

Основными понятиями квантовой кинематики являются понятия наблюдаемой и состояния .

Основные уравнения квантовой динамики - уравнение Шрёдингера , уравнение фон Неймана , уравнение Линдблада , уравнение Гейзенберга и уравнение Паули .

Уравнения квантовой механики тесно связаны со многими разделами математики, среди которых: теория операторов , теория вероятностей , функциональный анализ , операторные алгебры , теория групп .

История

На заседании Немецкого физического общества Макс Планк зачитал свою историческую статью «К теории распределения энергии излучения в нормальном спектре» , в которой он ввёл универсальную постоянную h {\displaystyle h} . Именно дату этого события, 14 декабря 1900 года, часто считают днем рождения квантовой теории.

Для объяснения структуры атома Нильс Бор предложил в 1913 году существование стационарных состояний электрона, в которых энергия может принимать лишь дискретные значения. Этот подход, развитый Арнольдом Зоммерфельдом и другими физиками, часто называют старой квантовой теорией (1900-1924 г.). Отличительной чертой старой квантовой теории является сочетание классической теории с противоречащими ей дополнительными предположениями.

  • Чистые состояния системы описываются ненулевыми векторами комплексного сепарабельного гильбертова пространства H {\displaystyle H} , причем векторы | ψ 1 ⟩ {\displaystyle |\psi _{1}\rangle } и | ψ 2 ⟩ {\displaystyle |\psi _{2}\rangle } описывают одно и то же состояние тогда и только тогда , когда | ψ 2 ⟩ = c | ψ 1 ⟩ {\displaystyle |\psi _{2}\rangle =c|\psi _{1}\rangle } , где c {\displaystyle c} - произвольное комплексное число.
  • Каждой наблюдаемой можно однозначно сопоставить линейный самосопряжённый оператор. При измерении наблюдаемой A ^ {\displaystyle {\hat {A}}} , при чистом состоянии системы | ψ ⟩ {\displaystyle |\psi \rangle } в среднем получается значение, равное
⟨ A ⟩ = ⟨ ψ | A ^ ψ ⟩ ⟨ ψ | ψ ⟩ = ⟨ ψ A ^ | ψ ⟩ ⟨ ψ | ψ ⟩ {\displaystyle \langle A\rangle ={\frac {\langle \psi |{\hat {A}}\psi \rangle }{\langle \psi |\psi \rangle }}={\frac {\langle \psi {\hat {A}}|\psi \rangle }{\langle \psi |\psi \rangle }}}

где через ⟨ ψ | ϕ ⟩ {\displaystyle \langle \psi |\phi \rangle } обозначается скалярное произведение векторов | ψ ⟩ {\displaystyle |\psi \rangle } и | ϕ ⟩ {\displaystyle |\phi \rangle } .

  • Эволюция чистого состояния гамильтоновой системы определяется уравнением Шрёдингера
i ℏ ∂ ∂ t | ψ ⟩ = H ^ | ψ ⟩ {\displaystyle i\hbar {\frac {\partial }{\partial t}}|\psi \rangle ={\hat {H}}|\psi \rangle }

где H ^ {\displaystyle {\hat {H}}} - гамильтониан .

Основные следствия этих положений:

  • При измерении любой квантовой наблюдаемой, возможно получение только ряда фиксированных её значений, равных собственным значениям её оператора - наблюдаемой.
  • Наблюдаемые одновременно измеримы (не влияют на результаты измерений друг друга) тогда и только тогда, когда соответствующие им самосопряжённые операторы перестановочны .

Эти положения позволяют создать математический аппарат, пригодный для описания широкого спектра задач в квантовой механике гамильтоновых систем, находящихся в чистых состояниях. Не все состояния квантово-механических систем, однако, являются чистыми. В общем случае состояние системы является смешанным и описывается матрицей плотности , для которой справедливо обобщение уравнения Шрёдингера - уравнение фон Неймана (для гамильтоновых систем). Дальнейшее обобщение квантовой механики на динамику открытых, негамильтоновых и диссипативных квантовых систем приводит к уравнению Линдблада .

Стационарное уравнение Шрёдингера

Пусть амплитуда вероятности нахождения частицы в точке М . Стационарное уравнение Шрёдингера позволяет её определить.
Функция ψ (r →) {\displaystyle \psi ({\vec {r}})} удовлетворяет уравнению:

− ℏ 2 2 m ∇ 2 ψ + U (r →) ψ = E ψ {\displaystyle -{{\hbar }^{2} \over 2m}{\nabla }^{\,2}\psi +U({\vec {r}})\psi =E\psi }

где ∇ 2 {\displaystyle {\nabla }^{\,2}} -оператор Лапласа , а U = U (r →) {\displaystyle U=U({\vec {r}})} - потенциальная энергия частицы как функция от .

Решение этого уравнения и есть основная задача квантовой механики. Примечательно то, что точное решение стационарного уравнения Шрёдингера может быть получено только для нескольких, сравнительно простых, систем. Среди таких систем можно выделить квантовый гармонический осциллятор и атом водорода . Для большинства реальных систем для получения решений могут быть использованы различные приближенные методы, такие как теория возмущений .

Решение стационарного уравнения

Пусть E и U две постоянные, независимые от r → {\displaystyle {\vec {r}}} .
Записав стационарное уравнение как:

∇ 2 ψ (r →) + 2 m ℏ 2 (E − U) ψ (r →) = 0 {\displaystyle {\nabla }^{\,2}\psi ({\vec {r}})+{2m \over {\hbar }^{2}}(E-U)\psi ({\vec {r}})=0}
  • Если E - U > 0 , то:
ψ (r →) = A e − i k → ⋅ r → + B e i k → ⋅ r → {\displaystyle \psi ({\vec {r}})=Ae^{-i{\vec {k}}\cdot {\vec {r}}}+Be^{i{\vec {k}}\cdot {\vec {r}}}} где: k = 2 m (E − U) ℏ {\displaystyle k={\frac {\sqrt {2m(E-U)}}{\hbar }}} - модуль волнового вектора ; A и B - две постоянные, определяющиеся граничными условиями .
  • Если E - U < 0 , то:
ψ (r →) = C e − k → ⋅ r → + D e k → ⋅ r → {\displaystyle \psi ({\vec {r}})=Ce^{-{\vec {k}}\cdot {\vec {r}}}+De^{{\vec {k}}\cdot {\vec {r}}}} где: k = 2 m (U − E) ℏ {\displaystyle k={\frac {\sqrt {2m(U-E)}}{\hbar }}} - модуль волнового вектора ; C и D - две постоянные, также определяющиеся граничными условиями .

Принцип неопределённости Гейзенберга

Соотношение неопределённости возникает между любыми квантовыми наблюдаемыми, определяемыми некоммутирующими операторами.

Неопределенность между координатой и импульсом

Пусть - среднеквадратическое отклонение координаты частицы M {\displaystyle M} , движущейся вдоль оси x {\displaystyle x} , и - среднеквадратическое отклонение её импульса . Величины Δ x {\displaystyle \Delta x} и Δ p {\displaystyle \Delta p} связаны следующим неравенством:

Δ x Δ p ⩾ ℏ 2 {\displaystyle \Delta x\Delta p\geqslant {\frac {\hbar }{2}}}

где h {\displaystyle h} - постоянная Планка, а ℏ = h 2 π . {\displaystyle \hbar ={\frac {h}{2\pi }}.}

Согласно соотношению неопределённостей, невозможно абсолютно точно определить одновременно координаты и импульс частицы. С повышением точности измерения координаты, максимальная точность измерения импульса уменьшается и наоборот. Те параметры, для которых такое утверждение справедливо, называются канонически сопряженными .

Это центрирование на измерении, идущее от Н.Бора, очень популярно. Однако соотношение неопределенности выводится теоретически из постулатов Шрёдингера и Борна и касается не измерения, а состояний объекта: оно утверждает, что для любого возможного состояния выполняются соответствующие соотношения неопределенности. Естественно, что оно будет выполняться и для измерений. Т.е. вместо "с повышением точности измерения координаты максимальная точность измерения импульса уменьшается" следует говорить: "в состояниях, где неопределенность координаты меньше, неопределенность импульса больше".

Неопределенность между энергией и временем

Пусть Δ E {\displaystyle \Delta E} - среднеквадратическое отклонение при измерении энергии некоторого состояния квантовой системы, и Δ t {\displaystyle \Delta t} - время жизни этого состояния. Тогда выполняется следующее неравенство,

Δ E Δ t ⩾ ℏ 2 . {\displaystyle \Delta E\Delta t\geqslant {\frac {\hbar }{2}}.}

Иными словами, состояние, живущее короткое время, не может иметь хорошо определённую энергию.

При этом, хотя вид этих двух соотношений неопределенности похож, но их природа (физика) совершенно различны.