Система цитокинов. Классификация

д.м.н., проф. Царегородцева Т.М., зав. лабораторией иммунологии

ЦНИИ гастроэнтерологии Департамента здравоохранения г. Москвы

Цитокинам (ЦК) принадлежит важная роль в развитии и течении заболеваний разных органов и систем, в том числе органов пищеварения. ЦК — низкомолекулярные белки, эндогенные биологически активные медиаторы, обеспечивающие передачу сигнала, обмен информацией между разными видами клеток внутри одного органа, связь между органами и системами, как в физиологических условиях, так и при действии различных патогенных факторов. У здоровых лиц ЦК продуцируются в минимальных количествах, достаточных для проявления биологического эффекта, при патологических состояниях их содержание многократно возрастает.

ЦК синтезируют активированные клетки, преимущественно лимфоциты, моноциты, тканевые макрофаги. Разные клетки, например макрофаги, лимфоциты, эндотелиоциты, могут синтезировать одни и те же ЦК. С другой стороны, одни и те же клетки могут вырабатывать разные ЦК.

Синтез ЦК запрограммирован генетически, кратковременен, регулируется ингибиторами. Повышенное содержание ЦК может быть обусловлено не только увеличением их синтеза, но и нарушением катаболизма, своевременного выведения из организма при поражениях печени, почек.

Увеличенный синтез ЦК приводит к активации множества самых разных типов клеток. Таким образом, реализуется широкое взаимодействие на субклеточном, клеточном, органном, системном уровнях, формирование комплексной защитной реакции, направленной на нейтрализацию повреждающих агентов, их разрушение, элиминацию из организма, сохранение его гомеостаза, структурной и функциональной целостности.

Классификация цитокинов

В настоящее время идентифицировано более 100 ЦК, и их число продолжает пополняться. Среди ЦК выделяют следующие основные группы: интерлейкины (ИЛ), интерфероны (ИФ), факторы некроза опухоли (ФНО), факторы роста, хемокины и др.

Механизмы действия

ЦК реализуют свой биологический эффект посредством связи с рецепторами, локализующимися на мембранах клеток-мишеней — иммунокомпетентных, эндотелиальных, эпителиальных, гладкомышечных и других специализированных клеток. Вне клетки ЦК могут связываться с циркулирующими рецепторами, которые транспортируют их в очаг поражения и выводят из сосудистого русла. Синтез рецепторов протекает более интенсивно и длительно, чем синтез ЦК, что способствует более полной реализации их биологического эффекта и удалению из организма.

Функциональные свойства

ЦК обладают широким спектром биологических свойств: индуцируют и регулируют такие физиологические и патологические процессы как рост, пролиферацию, дифференцировку клеток, метаболизм, воспаление, иммунный ответ. ЦК многофункциональны, универсальны, плейотропны. Одни и те же ЦК могут взаимодействовать с рецепторами разных клеток, при этом ЦК со сходным строением могут оказывать различное биологическое действие, а разные в структурном отношении ЦК — вызывать одинаковый эффект.

В организме ЦК тесно взаимодействуют между собой, образуя универсальную сеть, запускающую и регулирующую каскад воспалительных, иммунных, метаболических процессов, как локальных, так и системных, направленных на нейтрализацию и элиминацию патогенных агентов. Эта коммуникационная биологическая система обладает значительным запасом прочности за счет дублирования большинства функций разными ЦК, их взаимозаменяемости, сочетания аутокринной и паракринной регуляции. Тем не менее, при всем многообразии функций у конкретных ЦК преобладают определенные свойства, выработанные в процессе эволюции.

Цитокины и воспаление

Провоспалительные ЦК (ИЛ-1β, ИЛ-6, ИЛ-8, ИЛ-12, ИФН-γ, ФНО-α) характеризуются широким диапазоном биологического действия на многочисленные клетки-мишени. ИЛ-1β при действии патогенных факторов одним из первых включается в ответную реакцию организма, активируя Т- и В-лимфоциты, инициируя синтез ИЛ-6, ФНО-α, ПГ, оказывая пирогенный эффект. ИЛ-6 продуцируется в основном лимфоцитами, однако в его синтезе могут принимать участие гепатоциты, клетки Купфера, эндотелия, эпителиальные клетки желчных протоков, фибробласты. ИЛ-6 оказывает не только про-, но и противовоспалительный эффект, завершает острую фазу воспаления, активирует В-лимфоциты, регулирует пролиферацию клеток печени, желчных протоков, формирование фиброза, образование гранулем. ИЛ-8 — хемокин — стимулирует и регулирует адгезию, хемотаксис лейкоцитов в очаг поражения. ФНО-α — ключевой многофункциональный ЦК системного действия, играет доминирующую роль в развитии местных и общих патологических процессов, стимулирует синтез провоспалительных ИЛ, пролиферацию клеток эндотелия, регулирует тонус кровеносных сосудов. ФНО-α усиливает окислительный стресс, оказывает мощный цитотоксический эффект, индуцирует некроз опухолевых, инфицированных и других пораженных клеток. Стимулируя цитотоксическую, фагоцитарную активность, утилизацию дефектных клеток, нейтрализуя бактериальные токсины, ФНО-α принимает участие в формировании защитных реакций организма. Однако интенсивный продолжительный синтез данного ЦК способствует расстройству гемодинамики, развитию гипертермии, кахексии, некроза, токсического септического шока, полиорганной недостаточности. ИЛ-12, стимулирует синтез ИФН-γ — универсального иммуномодулятора, повышающего адгезивную, цитотоксическую, фагоцитарную активность клеток, оказывающего антипролиферативный, противовирусный эффект.

Противовоспалительные цитокины — ИЛ-4, -10, -13, -17 — ингибируют воспаление, угнетают синтез провоспалительных ЦК, образование высокоактивных метаболитов кислорода, азота. ИЛ-4 стимулирует пролиферацию и дифференцировку В-лимфоцитов в плазматические клетки, синтез иммуноглобулинов, антител, гуморальный иммунный ответ. Такова краткая характеристика основных биологических функций ключевых ЦК, регулирующих как местные, так и системные воспалительные процессы. Воспаление — универсальная реакция, развивающаяся в организме в ответ на действие различных повреждающих факторов. Большинство болезней органов пищеварения — гастрит, панкреатит, гепатит, холецистит и другие — обусловлены в значительной степени развитием воспаления. ЦК регулируют интенсивность, распространенность и продолжительность воспаления. С одной стороны, провоспалительные ЦК усиливают явления альтерации, деструкции, стимулируют синтез острофазных белков, окислительный стресс. С другой — раннее развитие адекватных воспалительных процессов способствует ограничению очага поражения, повышению барьерных функций, регенерации, заживлению тканевого дефекта, предотвращению системных осложнений.

Цитокины и иммунный ответ

ЦК принимают непосредственное участие в формировании как неспецифической защиты, так и специфического иммунного ответа, образующих в комплексе единую интегративную клеточно-гуморальную систему защиты организма при действии патогенных агентов. В тех случаях, когда повреждающий фактор является носителем генетически чужеродной информации, воспалительные процессы включают иммунные механизмы. Основные клетки, реализующие иммунный ответ, — макрофаги, Т- и В-лимфоциты, плазмоциты. Однако и многие тканевые клетки (эндотелия, эпителия, гладкой мускулатуры, печени и др.) принимают участие в иммунном ответе, взаимодействуя с иммунокомпетентными клетками. Ведущая роль в развитии и регуляции иммунного ответа принадлежит Т-лимфоцитам, популяция которых включает Т-хелперы, Т-супрессоры, цитотоксические Т-лимфоциты. Т-хелперы (Тх) продуцируют ЦК с различными функциональными свойствами. Тх 1 типа синтезируют ИФН-γ, ИЛ- 2, ФНО-α; Тх 11 типа — ИЛ-4, -5, -6, -10, -13, индуцирующие соответственно клеточный и гуморальный иммунный ответ. В собственной пластинке и пейеровых бляшках ЖКТ локализуются преимущественно Тх 11 типа, стимулирующие гуморальный иммунный ответ, направленный против многочисленных бактериальных антигенов, воздействующих на слизистую оболочку ЖКТ, и реализуемый в основном IgА.

Цитокины играют ведущую роль в регуляции основных этапов иммунного ответа. В зависимости от характера патогенного агента, интенсивности, продолжительности антигенной стимуляции, исходного состояния иммунной системы организма ЦК могут действовать как антагонисты, так и синергисты, дополняя друг друга. При заболеваниях органов пищеварения (ЗОП) формируется интегрированный ответ иммунной системы, опосредованный клеточными и гуморальными факторами, конечной целью которого является инактивация и удаление из организма патогенных агентов. В физиологических условиях функционирование иммунной системы определяется сбалансированной продукцией регуляторных цитокинов Т -хелперами 1 и 11 типов. Нарушение цитокинового баланса играет значительную роль в хронизации, прогрессировании ЗОП.

Для определения количественного содержания ЦК в настоящее время широко применяется высокоинформативный метод иммуноферментного анализа с использованием высокочувствительных тест-систем, в т.ч. и отечественного производства.

Результаты многолетних исследований, проводимых в ЦНИИ гастроэнтерологии, позволили выявить особенности изменения цитокинового статуса при ЗОП в зависимости от этиологического фактора, вариантов течения, стадии, продолжительности заболевания, проводимой терапии.

Для таких хронических рецидивирующих заболеваний органов пищеварения (ХРЗОП), как язвенная, желчно-каменная болезнь, панкреатит характерно многократное, относительно кратковременное увеличение в периферической крови содержания широкого спектра ЦК, отражающее временную последовательность их синтеза, динамику патологического процесса. На ранних сроках и пике обострения ХРЗОП, в фазу альтеративно-деструктивных процессов преобладает повышение уровня ИЛ-1β, -6, -8, -12, ИФ-γ,ФНО-α (в среднем — 240–780, достигая у отдельных больных с выраженной активностью — 1100–3200 пг/мл, в контроле — до 40 пг/мл). При усилении регенераторно-восстановительных процессов содержание провоспалительных ЦК существенно снижается, а противовоспалительных (ИЛ-4, -10) — возрастает. При переходе в ремиссию у большинства больных концентрация ЦК приближается к нормальным значениям. Следовательно, в динамике патологического процесса при ХРЗОП содержание ЦК с различными функциональными свойствами, их соотношение претерпевает существенные изменения.

Для таких хронических прогрессирующих заболеваний (ХПЗОП), как хронический гепатит, цирроз печени, болезнь Крона, неспецифический язвенный колит характерно умеренное (в среднем — 160–390 пг/мл), стойкое, относительно монотонное увеличение содержания ключевых про- и противовоспалительных ЦК, которое возрастает при действии неблагоприятных факторов, развитии осложнений, сопутствующих заболеваний. По мере увеличения продолжительности заболевания, частоты рецидивов синтез ЦК снижается в результате угнетения функциональной активности иммунной системы, истощения ее ресурсов, развития вторичного иммунодефицита, обусловленного прогрессированием самого заболевания, а также ингибирующим эффектом медикаментозной терапии.

Цитокины регулируют интенсивность местных и системных патологических процессов. Заболевания желудка, поджелудочной железы, желчного пузыря, печени, тонкой и толстой кишки сопровождаются изменением содержания ЦК в поврежденной ткани и прилегающей зоне, характеризующим интенсивность местного иммунного ответа. Выраженное увеличение концентрации ЦК в периферической крови является отражением системной реакции организма, в частности иммунной, гемопоэтической систем, на локальные повреждения органов и может служить одним из показателей интенсивности воспалительного, иммунного процессов, активности, прогрессирования заболевания.

Этиологический фактор оказывает существенное влияние на уровень циркулирующих ЦК при ЗОП. Так, повышение содержания ЦК при хронических инфекционных, воспалительных, аутоиммунных заболеваниях более выражено, нежели при злокачественных новообразованиях, нарушениях обмена, наследственных поражениях.

Увеличение синтеза ЦК — вторичный феномен, ответ организма на действие патогенных факторов. Повышение концентрации ИЛ-1β, -2, -6, -8, -12, ИФ-γ, ФНО-α на ранних сроках и в разгар заболевания отражает увеличение адгезивной, хемотоксической, цитотоксической активности, синтеза биологически активных веществ, белков острой фазы, свободных радикалов. Эти процессы обусловливают нарушение микроциркуляции, развитие гиперемии, отека, некробиоза. В более поздние периоды под влиянием ЦК (ИФ-γ, ФНО-α, ИЛ-6, -4, -10) поврежденные клетки фагоцитируются, деструктивный материал утилизируется, нарастают процессы регенерации, ангиогенеза, восстановление эпителиального слоя, рост фиброзной ткани. Посредством перечисленных механизмов ЦК принимают участие в патогенезе ЗОП, инициируя и регулируя экссудативно-альтеративные и компенсаторно-восстановительные процессы в тканях ЖКТ, реализуя взаимодействие между иммунокомпетентными и различными специализированными клетками. В зависимости от конкретных условий, ЦК могут выполнять роль как факторов агрессии, так и защиты. Защитный эффект ЦК связан с активацией врожденного и приобретенного иммунитета, путем стимуляции неспецифической, естественной резистентности и специфического иммунного ответа.

Биологический эффект ЦК при действии различных патогенных факторов (инфекционных, токсических, механических, термических) определяется интенсивностью, продолжительностью антигенной стимуляции и характеризуется отсутствием специфичности. Увеличение синтеза ЦК — универсальный, неспецифический ответ организма на действие патогенных агентов. Продолжительный, интенсивный синтез ЦК, их чрезмерный выброс может стать фактором прогрессирования патологического процесса, оказывая прямое повреждающее действие на клетки и ткани.

Роль цитокинов в диагностике заболеваний органов пищеварения

Изменения цитокинового статуса при ЗОП разной этиологии различаются количественными параметрами, каких-либо существенных качественных, специфических особенностей при этом выявить не удается. В связи с этим не представляется возможным говорить о непосредственной диагностической ценности определения цитокинового статуса, что не исключает его опосредованного значения. Например, увеличение концентрации провоспалительных ЦК в желчи свидетельствует о наличии воспалительного процесса в желчном пузыре. Однако определение цитокинового статуса при ЗОП имеет важное прогностическое значение, поскольку уровень про- и противовоспалительных ЦК, их соотношение отражает интенсивность альтеративно-деструктивных и регенераторно-восстановительных процессов, их динамику, прогрессирование заболевания.

Базисная терапия, проводимая пациентам с обострениями хронических ЗОП, сопровождается у большинства больных достоверным снижением увеличенных концентраций сывороточных ЦК по сравнению с уровнем, предшествующим лечению. Эти данные отражают положительную динамику показателей клинико-лабораторной активности заболевания, иммунного статуса, эффективность применяемой терапии. Продолжающееся повышение содержания провоспалительных ЦК (прежде всего ФНО-α) на фоне проводимой терапии свидетельствует об отсутствии выраженных позитивных изменений, прогрессировании патологического процесса.

Цитокинотерапия

Достижения современной молекулярной биологии, биотехнологии, иммунологии, генетики в изучении структурной организации, функциональных свойств ЦК служат основанием для их использования с терапевтической целью при заболеваниях разных органов и систем.

ЦК могут применяться в качестве как заместительной, стимулирующей, так и ингибирующей функциональную активность иммунной системы терапии. Терапевтическое действие ряда ЦК обусловлено их способностью усиливать общую реактивность организма, неспецифическую защиту и специфический иммунитет, оказывать антивирусный, антибактериальный, антитоксический эффект. Показанием для проведения заместительной, компенсаторной терапии ЦК служит снижение их содержания, вторичные иммунодефицитные состояния, которые нередко встречаются при хронических прогрессирующих инфекционных, воспалительных, аутоиммунных заболеваниях.

Позитивные результаты отмечены при использовании рекомбинантных препаратов интерферонов, интерлейкинов, активирующих местный и системный иммунитет. В настоящее время обширный фактический материал получен в отношении терапевтического эффекта рекомбинантных препаратов интерферона-α (роферона А, реаферона, интрона А), используемых в качестве универсального неспецифического противовирусного средства, в частности при вирусных гепатитах. В ЦНИИ гастроэнтерологии применение у больных хроническим вирусным гепатитом С комбинированной противовирусной терапии, включающей рекомбинантные препараты интерферона-α 2 отечественного производства, сопровождалось позитивной динамикой показателей клинической, гистологической, биохимической, вирусологической активности, иммунного статуса.

Мощным активатором естественной резистентности являются препараты ИНФ-α, индукторы его синтеза (циклоферон, амиксин), стимулирующие неспецифическую защиту, цитотоксическую, фагоцитарную активность, способствуя тем самым разрушению и удалению из организма инфицированных, опухолевых и других дефектных клеток.

В случаях стойкого увеличения синтеза ЦК при хронических прогрессирующих заболеваниях применяются ингибиторы, антагонисты ЦК. К ним, в частности, относятся препараты, содержащие моноклональные антитела к ФНОα (инфликсимаб). Внутривенное введение инфликсимаба больным неспецифическим язвенным колитом, болезнью Крона, находившимся на стационарном лечении в ЦНИИ гастроэнтерологии, сопровождалось выраженным изменением цитокинового статуса: снижением в периферической крови содержания не только ФНО-α (с 110 до 55 пг/мл), но и ИЛ-6 (с 60 до 30 пг/мл), с одновременным увеличением концентрации ИЛ-12 (с 90 до 210 пг/мл), без существенного изменения уровня ИЛ-4.

Таким образом, применение ЦК, их индукторов, ингибиторов сопровождается улучшением показателей клинико-лабораторной активности, снижением интенсивности воспалительных, иммунопатологических реакций при хронических ЗОП, однако позитивный эффект носит временный характер.

Заключение

Изменения цитокинового статуса при ЗОП выражены в различной степени в зависимости от этиологического фактора, вариантов течения, продолжительности, стадии, активности заболевания, проводимой терапии. Максимальное, относительно кратковременное увеличение содержания в периферической крови широкого спектра ЦК, отражающее динамику патологического процесса, характерно для обострений хронических рецидивирующих ЗОП. Продолжительное, монотонное, умеренно выраженное повышение концентрации ключевых про- и противовоспалительных ЦК отмечено при прогрессирующих ЗОП. Базисная терапия при ЗОП сопровождается снижением увеличенного содержания ЦК с одновременной позитивной динамикой клинико-лабораторных показателей активности заболевания.

Определение цитокинового статуса имеет важное прогностическое значение, поскольку позволяет судить об интенсивности воспалительных, инфекционных, иммунопатологических процессов, их динамике, прогрессировании ЗОП, а также эффективности проводимой терапии.

Литература

1. Ляшенко А.А., Уваров В.Ю. К вопросу о систематизации цитокинов// Успехи современной биологии.- 2001.- 121.- № 6.- С. 589–603.

2. Черешнев В.А., Гусев Е.И. Иммунология воспаления: роль цитокинов// Мед. иммунология.- 2001.- т. 3.- № 3.- С. 361–368.

3. Ройт А., Бростофф Дж., Мейл Д. Иммунология.- М.: Мир, 2000.- С. 169–175.

4. Адлер Гвидо. Болезнь Крона и язвенный колит.- М.: Медицина, 2001.- 64 с.

5. Андерсен Л., Норгард А., Беннедсен М. Клеточный иммунный ответ на инфекцию Н.р./ В кн.: Нelicobacter рylori: революция в гастроэнтерологии.- М., 1999.- С. 46–53.

6. Астахин А.В., Левитан Б.Н., Дудина О.С. и соавт. Регуляторные цитокины сыворотки крови при хронических гепатитах и циррозах печени// Рос. журн. гастроэнтерол., гепатол., колопроктол.- 2002.- 12.- 5.- С. 80.

7. Гудкова Р.Б., Жукова С.Г., Крумс Л.М. Сывороточные цитокины при глютеновой энтеропатии// Рос. гастроэнтер. журн.- 2001.- № 2.- С. 121.

8. Жукова Е.Н. Сывороточный интерлейкин 8 в различные периоды течения хронического рецидивирующего панкреатита и его участие в патогенезе заболевания// Росс. гастроэнтерол. журн.- 2000.- № 1.- С. 15–18.

9. Кондрашина Э.А., Калинина Н.М., Давыдова Н.И., Барановский А.Ю., Кондрашин А.С. Особенности цитокинового профиля у пациентов с хроническим H. pylory-ассоциированным гастритом и язвенной болезнью// Цитокины и воспаление.- 2002.- т. 1.- № 4.- С. 3–11.

10. Лазебник Л.Б., Царегородцева Т.М., Серова Т.И. и соавт. Цитокины и цитокинотерапия при болезнях органов пищеварения// Тер. арх.- 2004.- № 4.- С. 69–72.

11. Царегородцева Т.М., Серова Т.И. Цитокины в гастроэнтерологии.- М.: Анахарсис, 2003.- 96 с.

12. Царегородцева Т.М., Винокурова Л.В., Живаева Н.С. Цитокиновый статус при хроническом панкреатите алкогольной и билиарной этиологии// Тер. арх.- 2006.- № 2.- С. 57–60.

13. Логинов А.С., Царегородцева Т.М., Серова Т.И. и соавт. Интерлейкины при хроническом вирусном гепатите// Тер. арх.- 2001.- № 2.- С. 17–20.

14. Павленко В.В. Интерлейкин-1b и регенераторная активность слизистой оболочки толстого кишечника при язвенном колите// Рос. журн. гастроэнтер., гепатол., колопроктол.- 2002.- т. ХII.- № 5.- С. 58.

15. Семененко Т.А. Клеточный имунный ответ при гепатите С// Вирусные гепатиты.- 2000.- № 1.- (8).- С. 3–9.

16. Соколова Г.Н., Царегородцева Т.М., Зотина М.М., Дубцова Е.А. Интерлейкины при язвенной болезни желудка и 12-перстной кишки// Рос. гастроэнтерол. журн.- 2001.- № 2.- С. 147–148.

17. Ткаченко Е.И., Еремина Е.И. Некоторые комментарии к современному состоянию проблемы язвенной болезни// Гастроэнтерология.- СПб.- 2002.- № 1.- С. 2–5.

18. Трухан Д.И. Клинико-иммунологические варианты течения хронического панкреатита// Тер. арх.- 2001.- № 2.- С. 20–23.

19. Шерлок Ш., Дулли Дж. Заболевания печени и желчных путей. М.: Медицина, 1999.- С. 92–95.

20. Шичкин В.П. Патогенетическое значение цитокинов и перспективы цитокиновой/антицитокиновой терапии// Иммунология.- 1998.- № 2.- С. 9–13.

21. Змызгова А.В. Интерферонотерапия вирусных гепатитов.- М., 1999.

22. Долгушина А.И. Бета-лейкин в лечении язвенной болезни// Цитокины и воспаление.- 2002.- т. 1.- № 2.- С. 34.

23. Москалев А.В., Голофеевский В.Ю., Ботиева В.И. и соавт. Коррекция бета-лейкином нарушений цитокинового статуса у больных с хроническими эрозиями желудка// Гастроэнтерология.- СПб.- 2003.- № 2.- 3.- С. 110.

24. Панина А.А., Антонов Ю.В., Недогода В.В. Опыт применения ронколейкина у больных хроническим вирусным гепатитом В// Мед. иммунология.- СПб.- 2002.- 4.- 2.- С. 370–371.

25. Скляр Л.Ф., Маркелова Е.В. Цитокинотерапия рекомбинантным интерлейкином 2 (Ронколейкином) больных хроническим вирусным гепатитом С// Цитокины и воспаление.- 2002.- т. 1.- № 4.- С. 43–46.

26. Ильченко Л.Ю., Царегородцева Т.М. Интерфероны и интерферонотерапия при хронических вирусных гепатитах// Эксперим. и клинич. гастроэнтерол.- 2003.- № 1.- С. 126.

27. Маммаев С.Н., Лукина Е.А., Ивашкин В.Т. и соавт. Продукция цитокинов у больных хроническим вирусным гепатитом С на фоне терапии интерферономa// Клинич. лаборат. диагностика.- 2001.- № 8.- С. 45–47.

28. Panaccione R., Ricart E., Sandborn W.J. et al. Infliximab for Crohn`s disease in clinical practice at the Mayo Clinic// Am..J.Gastroenterol..- 2001.- 96.- P. 722–729.

29. Sandborn W.J., Hanauer S.B. Infliximab in the treatment of Chrohn`s Disease// Am.J.Gastroenterol.- 2002.- v. 97.- № 12.- P. 2962–2972.

30. Tremaine W.I., Sands B.E., Rutgeerts P.J. et al. Infliximab in the treatment of severe, steroid-refractory ulcerative colitis// J.B.D.- 2001.- 7.- P. 83–88.

31. Wagner C., Cornillie F., Shealy D. et al. Infliximab induced potent antiflammatory and local immunomodulatory activity but no systemic immune supression in patients with Crohn`s disease// Aliment. Pharmacol. Ther.- 2001.- 15.- P. 463–473.

32. Белоусова Е.А. Инфликсимаб — новый этап в лечении болезни Крона// Фарматека.- 2002.- № 9.- С. 17–25.

Челябинский Государственный Университет

На тему: « Цитокины»

Выполнила: Устюжанина Д.В.

Группа ББ 202-1

Челябинск

    Общая характеристика цитокинов

    Механизм действия цитокинов

    Механизм нарушения

    Интерлейкины

    Интерфероны

    TNF: Фактор некроза опухолей

    Колониестимулирующие факторы

1.Цитокины

Цитокинами - специфические белки, с помощью которых разнообразные клетки иммунной системы могут обмениваться друг с другом информацией и осуществлять координацию действий. Набор и количества цитокинов, действующих на рецепторы клеточной поверхности, - "цитокиновая среда" - представляют собой матрицу взаимодействующих и часто меняющихся сигналов. Эти сигналы носят сложный характер из-за большого разнообразия цитокиновых рецепторов и из-за того, что каждый из цитокинов может активировать или подавлять несколько процессов, включая свой собственный синтез и синтез других цитокинов, а также образование и появление на поверхности клеток цитокиновых рецепторов. Для различных тканей характерна своя здоровая "цитокиновая среда". Обнаружено более сотни разнообразных цитокинов.

Цитокины от гормонов отличаются тем, что они продуцируются не железами внутренней секреции, а различными типами клеток; роме того они контролируют гораздо более широкий спектр клеток-мишеней по сравнению с гормонами.

Цитокины включают в себя некоторые факторы роста, такие как интерфероны , фактор некроза опухоли (TNF ) , ряд интерлейкинов , колонии стимулирующий фактор (CSF ) и многие другие.

К цитокинам относят интерфероны, колониестимулирующие факторы (КСФ), хемокины, трансформирующие ростовые факторы; фактор некроза опухолей; интерлейкины со сложившимися исторически порядковыми номерами и некоторые другие эндогенные медиаторы. Интерлейкины, имеющие порядковые номера, начиная с 1, не относятся к одной подгруппе цитокинов, связанных общностью функций. Они в свою очередь могут быть разделены на провоспалительные цитокины, ростовые и дифференцировочные факторы лимфоцитов, отдельные регуляторные цитокины.

Классификация по строению:

Функциональная классификация:

Классификация рецепторов цитокинов

Структурно-функциональная классификация цитокинов

Семейства цитокинов

Подгруппы и лиганды

Основные биологические функции

Интерфероны I типа

ИФН , , , , , , ИЛ-28, ИЛ-29 (ИФН )

Противовирусная активность, антипролиферативное, иммуномодулирующее действие

Факторы роста гемопоэтических клеток

Фактор стволовых клеток (kit - ligand , steel factor ), Flt -3 ligand , Г-КСФ, М-КСФ, ИЛ-7, ИЛ-11

Стимуляция пролиферации и дифференцировки различных типов клеток предшественников в костном мозге, активация кроветворения

Лиганды gp 140:

ИЛ-3, ИЛ-5, ГМ-КСФ

Эритропоэтин, Тромбопоэтин

Суперсемейство интерлейкина-1

и ФРФ

Семейство ФРФ:

Кислый ФРФ, основной ФРФ, ФРФ3 – ФРФ23

Активация пролиферации фибробластов и эпителиальных клеток

Семейство ИЛ-1 (F 1-11): ИЛ-1α, ИЛ-1β, Рецепторный антагонист ИЛ-1, ИЛ-18, ИЛ-33 и др.

Провоспалительное действие, активация специфического иммунитета

Семейство фактора некроза опухолей

ФНО, лимфотоксины α и β, Fas -лиганд и др.

Провоспалительное действие, регуляция апоптоза и межклеточного взаимодействия иммунокомпетентных клеток

Семейство интерлейкина-6

Лиганды gp 130:

ИЛ-6, ИЛ-11, ИЛ-31, Онкостатин-М, Кардиотропин-1, Leukemia inhibitory factor , Ciliaryneurotrophic factor

Провоспалительное и иммунорегуляторное действие

Хемокины

СС, СХС (ИЛ-8), СХ3С, С

Регуляция хемотаксиса различных типов лейкоцитов

Семейство интерлейкина-10

ИЛ- 10,19,20,22,24,26

Иммуносупрессивное действие

C емейство интерлейкина-12

ИЛ- 12,23,27

Регуляция дифференцировки Т-лимфоцитов хелперов

Цитокины Т-хелперных клонов и регулирующие функции лимфоцитов

Т-хелперы 1 типа:

ИЛ-2, ИЛ-15, ИЛ-21, ИФН

Активация клеточного иммунитета

Т-хелперы 2 типа:

ИЛ-4, ИЛ-5, ИЛ-10, ИЛ-13

Активация гуморального иммунитета, иммуномодулирующее действие

Лиганды γ-цепи рецептора ИЛ-2:

ИЛ-4 ИЛ-13

ИЛ-7 ТСЛП

Стимуляция дифференцировки, пролиферации и функциональных свойств различных типов лимфоцитов, ДК, НК клеток, макрофагов и др.

Семейство интерлейкина 17

ИЛ- 17 A , B , C , D , E , F

Активация синтеза провоспалительных цитокинов

Суперсемейство фактора роста нервов, тромбоцитарного ростового фактора и трансформирующих ростовых факторов

Семейство фактора роста нервов: ФРН, мозговой нейротрофический фактор

Регуляция воспаления, ангиогенеза, функционирования нейронов, эмбрионального развития и регенерации тканей

Факторы роста из тромбоцитов (PDGF ), ангиогенные ростовые факторы (VEGF )

Семейство ТРФ:

ТРФ , активины, ингибины, Nodal , Bone morphogenic proteins , Mullerian inhibitory substance

Семейство эпидермального ростового фактора

ЭРФ, ТРФα и др.

Семейство инсулиноподобных ростовых факторов

ИРФ- I , ИРФ -II

Стимуляция пролиферации различных типов клеток

Общие свойства цитокинов:

1. Цитокины являются полипептидами или белками, часто гликозилированными, большинство из них имеют ММ от 5 до 50 кДа. Биологически активные молекулы цитокинов могут состоять из одной, двух, трех и более одинаковых или разных субъединиц. 2. Цитокины не имеют антигенной специфичности биологического действия. Они влияют на функциональную активность клеток, принимающих участие в реакциях врожденного и приобретенного иммунитета. Тем не менее, воздействуя на Т- и В-лимфоциты, цитокины способны стимулировать индуцированные антигенами процессы в иммунной системе. 3. Для генов цитокинов существуют три варианта экспрессии: а) стадиоспецифическая экспрессия на определенных стадиях эмбрионального развития, б) конститутивная экспрессия для регуляции ряда нормальных физиологических функций, в) индуцибельный тип экспрессии, характерный для большинства цитокинов. Действительно, большинство цитокинов вне воспалительной реакции и иммунного ответа не синтезируются клетками. Экспрессия генов цитокинов начинается в ответ на проникновение в организм патогенов, антигенное раздражение или повреждение тканей. Одними из наиболее сильных индукторов синтеза провоспалительных цитокинов служат патоген-ассоциированные молекулярные структуры. Для запуска синтеза Т-клеточных цитокинов требуется активация клеток специфическим антигеном с участием Т-клеточного антигенного рецептора. 4. Цитокины синтезируются в ответ на стимуляцию короткий промежуток времени. Синтез прекращается за счет разнообразных механизмов ауторегуляции, включая повышенную нестабильность РНК, и за счет существования отрицательных обратных связей, опосредуемых простагландинами, кортикостероидными гормонами и другими факторами. 5. Один и тот же цитокин может продуцироваться различными по гистогенетическому происхождению типами клеток организма в разных органах. 6. Цитокины могут быть ассоциированными с мембранами синтезирующих их клеток, обладая в виде мембранной формы полным спектром биологической активности и проявляя свое биологическое действие при межклеточном контакте. 7. Биологические эффекты цитокинов опосредуются через специфические клеточные рецепторные комплексы, связывающие цитокины с очень высокой аффинностью, причем, отдельные цитокины могут использовать общие субъединицы рецепторов. Рецепторы цитокинов могут существовать в растворимой форме, сохраняя способность связывать лиганды. 8. Цитокины обладают плейотропностью биологического действия. Один и тот же цитокин может действовать на многие типы клеток, вызывая различные эффекты в зависимости от вида клеток-мишеней. Плейотропность действия цитокинов обеспечивается экспрессией рецепторов цитокинов на разных по происхождению и функциям типах клеток и проведением сигнала с использованием нескольких разных внутриклеточных мессенджеров и транскрипционных факторов. 9. Для цитокинов характерна взаимозаменяемость биологического действия. Несколько разных цитокинов могут вызывать один и тот же биологический эффект либо обладать похожей активностью. Цитокины индуцируют либо подавляют синтез самих себя, других цитокинов и их рецепторов. 10. В ответ на активационный сигнал происходит синтез клетками одновременно нескольких цитокинов, участвующих в формировании цитокиновой сети. Биологические эффекты в тканях и на уровне организма зависят от присутствия и концентрации других цитокинов с синергичным, аддитивным или противоположным действием. 11. Цитокины могут влиять на пролиферацию, дифференцировку и функциональную активность клеток-мишеней. 12. Цитокины действуют на клетки различными путями: аутокринно – на клетку, синтезирующую и секретирующую данный цитокин; паракринно – на клетки, расположенные вблизи клетки-продуцента, например, в очаге воспаления или в лимфоидном органе; эндокринно – дистантно на клетки любых органов и тканей после попадания в циркуляцию. В последнем случае действие цитокинов напоминает действие гормонов.

Один и тот же цитокин может продуцироваться различными по гистогенетическому происхождению типами клеток организма в разных органах и действовать на многие типы клеток, вызывая различные эффекты в зависимости от вида клеток-мишеней.

Три варианта проявления биологического действия цитокинов.

По-видимому формирование системы цитокиновой регуляции эволюционно проходило вместе с развитием многоклеточных организмов и было обусловлено необходимостью образования посредников межклеточного взаимодействия, к которым могут быть причислены гормоны, нейропептиды, молекулы адгезии и некоторые другие. Цитокины в этом плане являются наиболее универсальной системой регуляции, так как способны проявлять биологическую активность как дистантно после секреции клеткой-продуцентом (местно и системно), так и при межклеточном контакте, будучи биологически активными в виде мембранной формы. Этим система цитокинов отличается от молекул адгезии, выполняющих более узкие функции только при непосредственном контакте клеток. В то же время система цитокинов отличается от гормонов, которые в основном синтезируются специализированными органами и оказывают действие после попадания в систему циркуляции. Роль цитокинов в регуляции физиологических функций организма может быть разделена на 4 основных составляющих: 1. Регуляция эмбриогенеза, закладки и развития органов, в т.ч. органов иммунной системы. 2. Регуляция отдельных нормальных физиологических функций. 3. Регуляция защитных реакций организма на местном и системном уровне. 4. Регуляция процессов регенерации тканей.

). В связи с тем, что они активировали или модулировали пролиферативные свойства клеток этого класса, они были названы иммуноцитокинами. После того, как стало известно, что эти соединения взаимодействуют не только с клетками иммунной системы, их название сократилось до цитокинов, включающих в себя также колониестимулирующий фактор ( CSF) и многие другие (см.Вазоактивные агенты и воспаление).

Цитокины (cytokines) [греч. kytos - сосуд, здесь - клетка и kineo - двигаю, побуждаю] - большая и разнообразная группа небольших по размерам (молекулярная масса от 8 до 80 кДа) медиаторов белковой природы - молекул-посредников («белков связи»), участвующих в межклеточной передаче сигналов преимущественно в иммунной системе. К цитокинам относят фактор некроза опухоли, интерфероны, ряд интерлейкинов и др. Цитокины, которые синтезируются лимфоцитами и являются регуляторами пролиферации и дифференцировки, в частности гематопоэтических клеток и клеток иммунной системы, называют лимфокинами . Термин «Цитокины» предложен С. Коеном с соавт. в 1974 г.

Все клетки иммунной системы имеют определенные функции и работают в четко согласованном взаимодействии, которое обеспечивается специальными биологически активными веществами - цитокинами - регуляторами иммунных реакций. Цитокины - это специфические белки, с помощью которых разнообразные клетки иммунной системы могут обмениваться друг с другом информацией и осуществлять координацию действий. Набор и количества цитокинов, действующих на рецепторы клеточной поверхности, - "цитокиновая среда" - представляют собой матрицу взаимодействующих и часто меняющихся сигналов. Эти сигналы носят сложный характер из-за большого разнообразия цитокиновых рецепторов и из-за того, что каждый из цитокинов может активировать или подавлять несколько процессов, включая свой собственный синтез и синтез других цитокинов, а также образование и появление на поверхности клеток цитокиновых рецепторов. Для различных тканей характерна своя здоровая "цитокиновая среда". Обнаружено более сотни разнообразных цитокинов.

Цитокины являются важным элементом при взаимодействии разных лимфоцитов между собой и с фагоцитами ( рис. 4). Именно посредством цитокинов Т-хелперы помогают координировать работу разнообразных клеток, задействованных в иммунной реакции.

С момента открытия в 1970-х годах интерлейкинов до настоящего времени обнаружено более ста биологически активных веществ. Различные цитокины регулируют пролиферацию и дифференцировку иммунокомпетентных клеток. И если влияние цитокинов на указанные процессы изучено довольно хорошо, то данные по действию цитокинов на апоптоз появились сравнительно недавно. Их следует учитывать и при клиническом использовании цитокинов.

Межклеточная сигнализация в иммунной системе осуществляется путем непосредственного контактного взаимодействия клеток или с помощью медиаторов межклеточных взаимодействий. При изучении дифференцировки иммунокомпетентных и гемопоэтических клеток, а также механизмов межклеточного взаимодействия, формирующих иммунный ответ, и была открыта большая и разнообразная группа растворимых медиаторов белковой природы - молекул-посредников ("белков связи"), участвующих в межклеточной передаче сигналов - цитокинов. Гормоны обычно исключают из этой категории на основании эндокринного (а не паракринного или аутокринного) характера их действия. (см. Цитокины: механизмы проведения гормонального сигнала). Вместе с гормонами и нейромедиаторами они составляют основу языка химической сигнализации, путем которой в многоклеточном организме регулируется морфогенез и регенерация тканей. В положительной и отрицательной регуляции иммунного ответа им принадлежит центральная роль. К настоящему времени у человека обнаружено и изучено в той или иной степени, как уже упоминалось выше, более ста цитокинов, и постоянно появляются сообщения об открытии новых. Для некоторых получены генно-инженерные аналоги. Цитокины действуют через активацию рецепторов цитокинов .

Достаточно часто подразделение цитокинов на ряд семейств проводят не по их функциям, а по характеру трехмерной структуры, что отражает внутригрупповое сходство по конформации и аминокислотной последовательности специфических клеточных цитокиновых рецепторов (см. " Рецепторы к цитокинам "). Часть из них продуцируется Т-клетками (см. " Цитокины, продуцируемые T-клетками "). Основная биологическая активность цитокинов - регуляция иммунного ответа на всех этапах его развития, в которой они играют центральную роль. В целом вся эта большая группа эндогенных регуляторов обеспечивает самые разнообразные процессы, такие как:

Индукция цитотоксичности у макрофагов ,

Многие тяжелые заболевания приводят к значительному повышению уровня ИЛ-1 и ФНО альфа . Эти цитокины способствуют активации фагоцитов, их миграции в место воспаления, а также высвобождению медиаторов воспаления - производных липидов, то есть простагландина Е2 , тромбоксанов и фактора активации тромбоцитов . Кроме того, они прямо или опосредованно вызывают расширение артериол , синтез адгезивных гликопротеидов , активируют Т- и В-лимфоциты. ИЛ-1 запускает синтез ИЛ-8 , способствующего хемотаксису моноцитов и нейтрофилов и выходу ферментов из нейтрофилов. В печени снижается синтез альбумина и усиливается синтез белков острой фазы воспаления , включая ингибиторы протеаз , компоненты комплемента , фибриноген , церулоплазмин , ферритин и гаптоглобин . Уровень С-реактивного белка , который связывается с поврежденными и погибшими клетками, а также некоторыми микроорганизмами, может повышаться в 1000 раз. Возможно также значительное повышение концентрации амилоида A в сыворотке и его отложение в различных органах, приводящее к вторичному амилоидозу . Важнейшим медиатором острой фазы воспаления является ИЛ-6 , хотя ИЛ-1 и ФНО альфа тоже могут вызывать описанные изменения функции печени. ИЛ-1 и ФНО альфа усиливают влияние друг друга на местные и общие проявления воспаления, поэтому сочетание этих двух цитокинов даже в небольших дозах способно вызвать полиорганную недостаточность и стойкую артериальную гипотонию . Подавление активности любого из них устраняет это взаимодействие и заметно улучшает состояние больного. ИЛ-1 сильнее активирует Т- и В-лимфоциты при 39*С, чем при 37*С. ИЛ-1 и ФНО альфа вызывают снижение безжировой массы тела и потерю аппетита , приводящие к кахексии при длительной лихорадке . Эти цитокины попадают в кровоток лишь на короткое время, но его оказывается достаточно, чтобы запустить продукцию ИЛ-6 . ИЛ-6 постоянно присутствует в крови, поэтому его концентрация в большей степени соответствует выраженности лихорадки и других проявлений инфекции. Тем не менее ИЛ-6 в отличие от ИЛ-1 и ФНО альфа не считают летальным цитокином.

Резюме. Цитокины - это небольшие белки, действующие аутокринно (т.е. на клетку, которая их продуцирует) или паракринно (на клетки, расположенные вблизи). Образование и высвобождение этих высокоактивных молекул происходит кратковременно и жестко регулируется. Цитокины, которые синтезируются лимфоцитами и являются регуляторами пролиферации и дифференцировки, в частности, гематопоэтических клеток и клеток иммунной системы, называют также лимфокинами и

«Система цитокинов. Классификация. Основные
свойства. Механизмы действия. Типы цитокиновой
регуляции. Клетки-продуценты и клетки-мишени.
Цитокиновая регуляция воспаления и иммунного
ответа».
Цикл 1 – иммунология.
Занятие № 3 а.

Цитокины

Сигнальные (биорегуляторные) молекулы,
управляющие практически всеми процессами в
организме – эмбриогенезом, гемопоэзом,
процессами созревания и дифференцировки
клеток, активации и гибели клеток, инициацией и
поддержанием разных типов иммунного ответа,
развитием воспаления, процессами репарации,
ремоделирования тканей, координацией работы
иммуно – нейро - эндокринной систем на уровне
организма в целом.

Цитокины

Растворимые гликопротеины (более 1300 молекул, 550 кDa) неиммуноглобулиновой природы,
освобождаемые клетками организма – хозяина,
обладающие неферментативным действием в низких
концентрациях (от пикомолярных до наномолярных),
действующие через специфические рецепторы на
клетках-мишенях, регулирующие различные функции
клеток организма.
В настоящее время известно около 200 цитокинов.

Цитокины и жизненный цикл
клеток
Цитокины –биорегуляторные
молекулы, контролирующие
разные этапы жизненного цикла
клеток:
процессы дифференцировки.
процессы пролиферации.
процессы функциональной
активации.
процессы гибели клеток.
Цитокины и иммунный ответ
Цитокины играют важную роль в
осуществлении реакций как
врожденного, так и
адаптивного иммунитета.
Цитокины обеспечивают
взаимосвязь врожденного и
адаптивного иммунных
ответов.

Свойства цитокинов

Характерен короткий период
полужизни:
цитокины быстро
инактивируются и
разрушаются.
Большинство из цитокинов
действует на местном уровне
(паракринно – на клетки
микроокружения).
Цитокинов больше, чем их
рецепторов (многие цитокины
используют общие
субъединицы рецепторов) на
клетках-мишенях для
передачи сигналов в ядро
клетки-мишени
Плейотропность – единственная
молекула может вызывать
множество эффектов путем
активации различных генов в
клетках-мишенях
Конвергенция функций – разные
цитокиновые молекулы могут
выполнять в организме
сходные функции
Полисферизм – множество
цитокинов могут
продуцироваться одной и той
же клеткой в ответ на один
стимул

Плейотропность цитокинов на примере интерферона-гамма

гранулоциты
эндотелий
активация
активация
Секреция
интерферонагамма
макрофаги
активация
NK
активация
многие типы клеток
повышение
противовирусной
активности
активация Т клеток
многие типы клеток
дифференцировка
В клеток
индукция экспрессии
MHC I или MHCII

Типы цитокиновой регуляции

Паракринная регуляция (в
большинстве случаев
цитокины действуют местно,
в очаге воспаления).
Аутокринная регуляция –
цитокин производится
клеткой, к нему клеткапроизводитель данного
цитокина экспрессирует
рецепторы, вследствие этого
цитокин действует на клетку,
его производящую.
Эндокринная регуляция –
отставленное действие:
интерлейкин 1 –бета –
эндогенный пироген
(действует на центр
терморегуляции в головном
мозге),
интерлейкин 6 действует на
гепатоциты, вызывая синтез
белков острой фазы,
ростовые факторы
действуют на костный мозг,
активируют гемопоэз и т.д.

10. Представление о системе цитокинов в клинической практике

Для клинической практики важно
отследить основную цепь
взаимодействий в
иммунопатогенезе
заболеваний:
1. Клетки- продуценты
цитокинов.
2. Цитокины и их антагонисты.
3. Клетки-мишени,
экспрессирующие рецепторы
цитокинов.
4. Производимые цитокинами
эффекты на уровне организма.
Цель: разработка и внедрение в
практику новых стратегий
терапии заболеваний:
цитокиновая терапия
(применение в клинике
препаратов цитокинов),
либо
антицитокиновая терапия
(применение в клинике
антагонистов цитокинов или
моноклональных антител к
цитокинам).

11. Основные типы цитокинов –общепринятые сокращения: интерлейкины

В более ранних
классификациях цитокинов
использовалось их деление
по принципу клеток,
синтезирующих цитокины:
лимфокины (цитокины,
секретируемые в основном
активированными Т
лимфоцитами –хелперами)
и
монокины (цитокины,
секретируемые клетками
моноцитарномакрофагал.ьного ряда)
Такой подход не всегда оправдан,
так как для цитокинов
характерно частичное
перекрывание функций.
Вследствие этого был введен
единый термин «интерлейкины»
IL (или ИЛ):
1,2,3,4,5,6,7,8,9,10,11,12,13,14,1
5,16,17 …..35
Термин «интерлейкины» означает
«молекулы, участвующие во
взаимоотношениях, «беседах»
между лейкоцитами».

12. Основные типы цитокинов –общепринятые сокращения:

факторы некроза опухолей
(ФНО или TNF)
TNF - (кахектин)
TNF- (лимфотоксин)
Интерфероны (ИФН или IFN)
IFN и IFN
IFN
трансформирующие ростовые
факторы:
Трансформирующий
ростовый фактор –альфа –
TGF -
Трансформирующий
ростовый фактор –бета –
TGF -
-хемокины:
IL-8
NAP -2 (neutrophil – activating
protein -2)
PF -4 (platelet factor 4)

13. Основные типы цитокинов –общепринятые сокращения:

Колониестимулирующие
факторы:
G -CSF - granulocyte colony
stimulating factor
GM - CSF – granulocyte macrophage colony stimulating
factor
M - CSF - macrophage colony
stimulating factor
Multi - CSF - IL - 3
«Лимфокины» – секретируются в
основном активированными Т h
клетками:
MAF - macrophage activating
factor
MCF - macrophage chemotactic
factor
MMIF-macrophage migration
inhibition factor
LMIF- leukocyte migration
inhibition factor

14. Основные типы цитокинов –общепринятые сокращения:

Полипептидные ростовые
факторы клеток:
a FGF – acidic fibroblast
growth factor
b FGF – basic fibroblast
growth factor
EGF – epidermal growth
factor
NGF – nerve growth factor
PDGF – platelet - derived
growth factor
VEGF – vascular endothelial
growth factor
Современные отечественные книги и
журналы

15. Классификация цитокинов на основе их биологических эффектов

1. Интерлейкины (ИЛ-1 ÷
ИЛ- 35) - сигнальные
молекулы,
действующие между
лейкоцитами.
2. Факторы некроза
опухоли - цитокины с
цитотоксическим и
регуляторным
действием (ФНО).
3. Интерфероны –
противовирусные
цитокины:
1 типа –ИФН α,β и др.
2 типа –ИФН γ
4. Факторы роста стволовых клеток (ИЛ-3, ИЛ
-7, ИЛ-11, эритропоэтин, тромбопоэтин,
колониестимулирующие факторы (КСФ): ГМКСФ (гранулоцитарно-макрофагальный
колониестимулирующий фактор), Г-КСФ
(гранулоцитарный КСФ), М-КСФ
(макрофагальный КСФ), регулирующие
гемопоэз.
5. Хемокины (CC, CXC (ИЛ-8), CX3C, С) ,
регулирующие хемотаксис различных клеток.
6.Факторы роста клеток (фактор роста
фибробластов, фактор роста
эндотелиальных клеток, фактор роста
эпидермиса и др.), трансформирующий
ростовый фактор - участвуют в регуляции
роста, дифференцировки разных клеток.

16. Классификация цитокинов на основе их роли в процессе регуляции воспаления

Провоспалительные
Синтезируются
преимущественно
активированными клетками
моноцитарно/макрофагально
го ряда и повышают
активность воспалительного
процесса.
Провоспалительных цитокинов
намного больше, чем
противовоспалительных.
Противовоспалительные
В основном, Т- клеточные
цитокины, снижающие
активность воспаления –
ИЛ-10,
ТГФ β (трансформирующий
фактор роста бета);
а также -рецепторный
антагонист интерлейкина-1
(РАИЛ).

17. Цитокины с регуляторной (противовоспалительной) активностью

цитокин
эффект
ИЛ-10
подавляет продукцию
цитокинов, подавляет
активацию Т-хелперов 1 типа
ТРФ - бета 1
(трансформирующий
ростовый фактор-бета 1)
подавляет активацию Тхелперов 1 и 2 типа,
стимулирует рост
фибробластов

18. 1. Цитокины врожденного иммунитета

Основные клеткипродуценты – клетки
миелоидного
происхождения.
После активации
образраспознающих
рецепторов
запускается
внутриклеточный
сигнальный каскад,
приводящий к
активации генов
провоспалительных
цитокинов и
интерферонов 1 типа
(α ; β и др.).

19. РАСПОЗНАВАНИЕ ПАТОГЕНОВ РЕЦЕПТОРАМИ ВРОЖДЕННОГО ИММУНИТЕТА

Патогены
Патоген-ассоциированные
молекулярные структуры или паттерны
(РАМРs)
Паттерн распознающие рецепторы (PRRs):
1. Растворимые (система комплемента)
2. Мембранные (TLRs –Толл- подобные рецепторы, CD14)
3. Внутриклеточные (NOD и др.).

20.

Сигнальные пути Толл-подобных рецепторов
Димеры Толл-подобных рецепторов
Клеточная
мембрана
TIR-домены
MyD88
IRAK-1
TRIF
IRAK-4
TRAF6
TAK1
IKKa
JNK
TBK
1
IKKb
IRF3
AP-1
NFkB
Экспрессия генов цитокинов семейства ИЛ-1,
провоспалительных цитокинов и хемокинов
АНТИБАКТЕРИАЛЬНАЯ ЗАЩИТА
Экспрессия генов интерферона
АНТИВИРУСНАЯ ЗАЩИТА

21. Функциональная активность провоспалительных цитокинов в зависимости от их концентрации –местное и системное действие

На местном уровне
Самым ранним эффектом
провоспалительных цитокинов
является повышение адгезивных
свойств эндотелия и привлечение
активированных клеток в очаг
воспаления из периферической
крови.
Провоспалительные цитокины
управляют местным воспалением с
его типичными проявлениями
(отек, покраснение, появление
болевого синдрома).
На системном уровне
При повышении концентрации
провоспалительных
цитокинов в крови,
они действуют практически на
все органы и системы,
участвующие в
поддержании гомеостаза
Примером зависимости эффектов провоспалительных цитокинов от их
концентрации в крови может служить фактор некроза опухолей-альфа

22.

УРОВНИ ПРОВОСПАЛИТЕЛЬНЫХ ЦИТОКИНОВ В ПЛАЗМЕ КРОВИ
10-7 М
ФНО
10-8 М
10-9 М
Местное воспаление
Системная
воспалительная
реакция
Септический шок
Активация фагоцитоза и
продукции кислородных
радикалов. Усиление
экспрессии молекул
адгезии на эндотелии.
Стимуляция синтеза
цитокинов и хемокинов.
Увеличение метаболизма
соединительной ткани.
Лихорадка.
Увеличение уровней
стероидных гормонов.
Лейкоцитоз.
Увеличение синтеза
остро-фазовых
белков.
Снижение сократимос-ти
миокарда и гладкомышечных клеток сосудов.
Увеличение проницаемости
эндотелия. Нарушение
микроциркуляции. Падение
артериального давления.
Гипогликемия.

23. Роль некоторых цитокинов в патогенезе воспалительных реакций: Усиление реакций врожденного иммунного ответа

цитокин
эффект
ИЛ-6
Острофазовый ответ (действие на гепатоциты)
ИЛ-8
Фактор хемотаксиса нейтрофилов и других лейкоцитов
Фактор некроза
опухолей –
альфа(ФНО α)
Активирует нейтрофилы, клетки эндотелия, гепатоциты
(продукция белков острой фазы), катаболический
эффект – приводит к кахексии
Интерферональфа (ИФНα)
Активирует макрофаги, клетки эндотелия, естественные
киллеры

24. Интерлейкин-1-бета: свойства

Клетка - мишень
Эффект
Макрофаги,
фибробласты,
остеобласты,
эпителий
Пролиферация, активация
Остеокласты
Усиление процессов реабсорбции в костях
Гепатоциты
Синтез белков острой фазы воспаления
Клетки
гипоталамуса
Синтез простагландинов и последующий
подъем температуры тела

25. Интерлейкин-1-бета: свойства

Клетка-мишень
Эффект
Т-лимфоциты
Пролиферация, дифференцировка,
синтез и секреция цитокинов,
повышение уровня экспрессии
рецепторов к ИЛ-2
В-лимфоциты
Пролиферация, дифференцировка
Нейтрофилы
Высвобождение из костного мозга,
хемотаксис, активация
Эндотелий
Активация экспрессии молекул адгезии

26. Биологический смысл действия цитокинов при системном воспалении

На уровне целостного
организма цитокины
осуществляют связь между
иммунной, нервной,
эндокринной, кроветворной и
другими системами
регуляции гомеостаза и
служат для их вовлечения в
организацию единой
защитной реакции.
Цитокины обеспечивают
«сигнал тревоги»,
означающий, что настало
время включить все резервы,
переключить энергетические
потоки и перестроить работу
всех систем для выполнения
одной, но важнейшей для
выживания задачи – борьбы
с внедрившимся патогеном.
Примером множественности эффектов провоспалительных цитокинов
в запуске системного воспаления может служить интерлейкин 1 бета

27.

INFα
IL-6
IL-12,IL-23
TNFα
IL-1β
IL-8
Синтез цитокинов
Регуляция
температуры,
поведения,
синтеза гормонов
Активация лимфоцитов
IL-1β
Экспрессия молекул
адгезии на эндотелиоцитах,
прокоагулянтная активность,
синтез цитокинов
Продукция белков
острой фазы воспаления
PG
Активация
кроветворения
LT
NO
Активация фагоцитоза
Активация iNOS и метаболизма
арахидоновой кислоты

28. IL-1 и TNF-

IL-1 и TNF-
Интерлейкин -1 – бета(IL-1)
и фактор некроза
опухолей –альфа (TNF-)
играют основную роль в
воспалительных ответах,
так как введение
рецепторного антагониста
интерлейкина 1(IL -1 ra) , а
также моноклональных
антител или растворимых
рецепторов TNF-
блокирует острые и
хронические
воспалительные ответы в
экспериментах на
животных.
.
Некоторые их таких
антагонистов и
моноклональных
антител уже
используются в
клинике – например,
при лечении сепсиса,
ревматоидного
артрита, системной
красной волчанки и
других заболеваний
человека.

29. Ростовые факторы

цитокин
ГМ-КСФ
(гранулоцитарно-макрофагальный
колониестимулирующий фактор)
М-КСФ
(Макрофаг- колониестимулирующий
фактор)
Г-КСФ
(Гранулоцит- колониестимулирующий
фактор)
эффект
стимулируют рост и
дифференцировку
клетокпредшественников
моноцитов и
полиморфноядерных лейкоцитов

30.

31.

РЕГУЛЯЦИЯ ПРИОБРЕТЕННОГО ИММУНИТЕТА
Цитокины – ростовые и дифференцировочные
факторы всех типов Т- и В-лимфоцитов
Главные функции: регуляция дифференцировки Т-хелперных клонов определение типов тканевого воспаления, Т-клеток эффекторов и классов антител
Тh1 – клеточный тип с участием макрофагов
и Т-лимфоцитов (гранулема

При туберкулезе; при саркоидозе, контактном дерматите, болезни Крона)
Тh2 – аллергический тип ответа с участием гистамина и простагландинов
Т h 17 – нейтрофильное воспаление
Tfn (фолликулярные Т хелперы)- гуморальный иммунный ответ
T reg –T h регуляторный (ограничение силы всех типов иммунного ответа и
воспаления)

В настоящей главе будет рассмотрен комплексный подход в оценке системы цитокинов с использованием описанных ранее современных методов исследования.

Вначале мы изложим основные представления о системе цитокинов.

Цитокины в настоящее время рассматривают как белковопептидные молекулы, продуцируемые различными клетками организма и осуществляющие межклеточные и межсистемные взаимодействия. Цитокины - универсальные регуляторы жизненного цикла клеток, они контролируют процессы дифференцировки, пролиферации, функциональной активации и апоптоза последних.

Цитокины, продуцируемые клетками иммунной системы, называют иммуноцитокинами; они представляют собой класс растворимых пептидных медиаторов иммунной системы, необходимых для ее развития, функционирования и взаимодействия с другими системами организма (Ковальчук Л.В. и соавт., 1999).

Являясь регуляторными молекулами, цитокины играют важную роль в осуществлении реакций врожденного и адаптивного иммунитета, обеспечивают их взаимосвязь, контролируют гемопоэз, воспаление, заживление ран, образование новых кровеносных сосудов (ангиогенез) и многие другие жизненно важные процессы.

В настоящее время существует несколько различных классификаций цитокинов, учитывающих их строение, функциональную активность, происхождение, тип цитокиновых рецепторов. Традиционно, в соответствии с биологическими эффектами, принято выделять следующие группы цитокинов.

1. Интерлейкины (ИЛ-1-ИЛ-33) - секреторные регуляторные белки иммунной системы, обеспечивающие медиаторные взаимодействия в иммунной системе и связь ее с другими системами организма. Интерлейкины разделяют по функциональной активности на про- и противовоспалительные цитокины, ростовые факторы лимфоцитов, регуляторные цитокины и др.

3. Факторы некроза опухоли (ФНО) - цитокины с цитотоксическим и регуляторным действиями: ФНОа и лимфотоксины (ЛТ).

4. Факторы роста гемопоэтических клеток - фактор роста стволовых клеток (Kit - ligand), ИЛ-3, ИЛ-7, ИЛ-11, эритропоэтин, тробопоэтин, гранулоцитарно-макрофагальный колониестимулирующий фактор - ГМ-КСФ, гранулоцитарный КСФ - Г-КСФ, макрофагаль-

ный КСФ - М-КСФ).

5. Хемокины - С, СС, СХС (ИЛ-8), СХ3С - регуляторы хемотаксиса различных типов клеток.

6. Факторы роста нелимфоидных клеток - регуляторы роста, дифференцировки и функциональной активности клеток различной тканевой принадлежности (фактор роста фибробластов - ФРФ, фактор роста эндотелиальных клеток, эпидермальный фактор роста - ЭФР эпидермиса) и трансформирующие факторы роста (ТФРβ, ТФРα).

Среди прочих в последние годы активно изучается фактор, ингибирующий миграцию макрофагов (миграцию ингибирующий фактор - МИФ), который рассматривается как нейрогормон с цитокиновой и ферментной активностью (Суслов А.П., 2003; Ковальчук Л.В. и соавт.,

Цитокины различаются по строению, биологической активности и другим свойствам. Однако наряду с различиями цитокины обладают общими свойствами, характерными для данного класса биорегуляторных молекул.

1. Цитокины - это, как правило, гликозилированные полипептиды средней молекулярной массы (менее 30 кD).

2. Цитокины вырабатываются клетками иммунной системы и другими клетками (например, эндотелием, фибробластами и др.) в ответ на активирующий стимул (патогенассоциированные молекулярные структуры, антигены, цитокины и др.) и участвуют в реакциях врожденного и адаптивного иммунитета, регулируя их силу и продолжительность. Некоторые цитокины синтезируются конститутивно.

3. Секреция цитокинов - короткий по времени процесс. Цитокины не сохраняются как преформированные молекулы, а их

синтез начинается всегда с транскрипции генов. Клетки вырабатывают цитокины в низкой концентрации (пикограммы на миллилитр).

4. В большинстве случаев цитокины продуцируются и действуют на клетки-мишени, находящиеся в непосредственной близости (короткодистантное действие). Основное место действия цитокинов - межклеточный синапс.

5. Избыточность системы цитокинов проявляется в том, что каждый тип клеток способен продуцировать несколько цитокинов, а каждый цитокин может секретироваться различными клетками.

6. Для всех цитокинов характерна плейотропность, или полифункциональность действия. Так, проявление признаков воспаления обусловлено влиянием ИЛ-1, ФНОα, ИЛ-6, ИЛ-8. Дублирование функций обеспечивает надежность работы системы цитокинов.

7. Действие цитокинов на клетки-мишени опосредуется высокоспецифичными высокоаффинными мембранными рецепторами, представляющими собой трансмембранные гликопротеины, состоящие, как правило, более чем из одной субъединицы. Внеклеточная часть рецепторов ответственна за связывание цитокина. Существуют рецепторы, устраняющие избыток цитокинов в патологическом очаге. Это так называемые рецепторы-ловушки. Растворимые рецепторы представляют собой внеклеточный домен мембранного рецептора, отделенный с помощью фермента. Растворимые рецепторы способны нейтрализовывать цитокины, участвовать в транспорте их в очаг воспаления и в выведении из организма.

8. Цитокины работают по принципу сети. Они могут действовать согласованно. Многие функции, приписываемые первоначально одному цитокину, как оказалось, обусловлены согласованным действием нескольких цитокинов (синергизм действия). Примерами синергического взаимодействия цитокинов являются стимуляция воспалительных реакций (ИЛ-1, ИЛ-6 и ФНОа), а также синтеза IgE

(ИЛ-4, ИЛ-5 и ИЛ-13).

Одни цитокины индуцируют синтез других цитокинов (каскад). Каскадность действия цитокинов необходима для развития воспалительных и иммунных реакций. Способность одних цитокинов усиливать или ослаблять продукцию других обусловливает важные позитивные и негативные регуляторные механизмы.

Известно антагонистическое действие цитокинов, например продукция ИЛ-6 в ответ на увеличение концентрации ФНОа может быть

негативным регуляторным механизмом контроля выработки этого медиатора при воспалении.

Цитокиновая регуляция функций клеток-мишеней осуществляется с помощью аутокринного, паракринного или эндокринного механизмов. Некоторые цитокины (ИЛ-1, ИЛ-6, ФНОα и др.) способны участвовать в реализации всех перечисленных механизмов.

Ответ клетки на влияние цитокина зависит от нескольких факторов:

От типа клеток и их исходной функциональной активности;

От локальной концентрации цитокина;

От присутствия других медиаторных молекул.

Таким образом, клетки-продуценты, цитокины и специфические для них рецепторы на клетках мишенях формируют единую медиаторную сеть. Именно набор регуляторных пептидов, а не индивидуальные цитокины, определяют окончательный ответ клетки. В настоящее время система цитокинов рассматривается как универсальная система регуляции на уровне целостного организма, обеспечивающая развитие защитных реакций (например, при инфекции).

В последние годы сложилось представление о системе цитокинов, объединяющей:

1) клетки-продуценты;

2) растворимые цитокины и их антагонисты;

3) клетки-мишени и их рецепторы (рис. 7.1).

Нарушения различных компонентов системы цитокинов приводят к развитию многочисленных патологических процессов, а потому выявление дефектов в этой регуляторной системе имеет важное значение для правильной постановки диагноза и назначения адекватной терапии.

Вначале рассмотрим основные компоненты системы цитокинов.

Клетки-продуценты цитокинов

I. Основную группу клеток-продуцентов цитокинов в адаптивном иммунном ответе представляют лимфоциты. Покоящиеся клетки не секретируют цитокины. При распознавании антигена и при участии рецепторных взаимодействий (CD28-CD80/86 для Т-лимфоцитов и СD40-CD40L для В-лимфоцитов) происходит активация клеток, приводящая к транскрипции генов цитокинов, трансляции и секреции гликозилированных пептидов в межклеточное пространство.

Рис. 7.1. Система цитокинов

CD4 Т-хелперы представлены субпопуляциями: Тh0, Тh1, Тh2, Тh17, Tfh, которые различаются между собой спектром секретируемых цитокинов в ответ на различные антигены.

Тh0 вырабатывают широкий спектр цитокинов в очень низких концентрациях.

Направление дифференцировки Th0 определяет развитие двух форм иммунного ответа с преобладанием гуморальных или клеточных механизмов.

Природа антигена, его концентрация, локализация в клетке, тип антигенпрезентирующих клеток и определенный набор цитокинов регулируют направление дифференцировки Тh0.

Дендритные клетки после захвата и процессинга антигена представляют антигенные пептиды Th0 клеткам и вырабатывают цитокины, регулирующие направление их дифференцировки в эффекторные клетки. Роль индивидуальных цитокинов в данном процессе отражена на рис. 7.2. ИЛ-12 индуцирует синтез ИФНγ Т-лимфоцитами и ]ЧГК. ИФНу обеспечивает дифференцировку ТЫ1, которые начинают секретировать цитокины (ИЛ-2, ИФНу, ИЛ-3, ФНОа, лимфотоксины), регулирующие развитие реакций на внутриклеточные патогены

(гиперчувствительности замедленного типа (ГЗТ) и различные типы клеточной цитотоксичности).

ИЛ-4 обеспечивает дифференцировку Тh0 в Тh2. Активированные Тh2 вырабатывают цитокины (ИЛ-4, ИЛ-5, ИЛ-6, ИЛ-13 и др.), определяющие пролиферацию В-лимфоцитов, их дальнейшую дифференцировку в плазматические клетки,и развитие реакций антителогенеза, преимущественно на внеклеточные патогены.

ИФНу негативно регулирует функцию Тh2-клеток и, наоборот, ИЛ-4, ИЛ-10, секретируемые Тh2, угнетают функцию Тh1 (рис. 7.3). Молекулярный механизм этой регуляции связан с транскрипционными факторами. Экспрессия Т-bet и STAT4, детерминированная ИФНу, направляет дифференцировку Т-клеток по пути Тh1 и супрессирует развитие Тh2. ИЛ-4 индуцирует экспрессию GATA-3 и STAT6, что соответственно обеспечивает превращение наивных ТЫ0 в Тh2-клетки (рис. 7.2).

В последние годы описана особая субпопуляция Т-клеток хелперов (Тh17), продуцирующих ИЛ-17. Члены семейства ИЛ-17 могут экспрессироваться активированными клетками памяти (CD4CD45RO), у5Т-клетками, NKT клетками, нейтрофилами, моноцитами под влиянием ИЛ-23, ИЛ-6, ТФРβ, вырабатываемых макрофагами и дендритными клетками. Основным дифференцировочным фактором у человека является ROR-C, у мышей - ROR-γl Показана кардинальная роль ИЛ-17 в развитии хронического воспаления и аутоиммунной патологии (см. рис. 7.2).

Кроме того, Т-лимфоциты в тимусе могут дифференцироваться в естественные клетки-регуляторы (Treg), экспрессирующие поверхностные маркеры CD4 + CD25 + и транскрипционный фактор FOXP3. Эти клетки способны подавлять иммунный ответ, опосредуемый Тh1 и Тh2-клетками, путем прямого межклеточного контакта и синтеза ТФРβ и ИЛ-10.

Схемы дифференцировки клонов Тh0 и секретируемых ими цитокинов представлены на рис. 7.2 и 7.3 (см. также цв. вклейку).

Т-цитотоксические клетки (CD8 +), естественные киллеры - слабые продуценты цитокинов, таких, как интерфероны, ФНОа и лимфотоксины.

Избыточная активация одной из субпопуляций Тh может определить развитие одного из вариантов иммунного ответа. Хроническая несбалансированность активации Тh способна привести к формированию иммунопатологических состояний, связанных с проявления-

ми аллергии, аутоиммунной патологии, хронических воспалительных процессов и др.

Рис. 7.2. Различные субпопуляции Т-лимфоцитов, продуцирующие цитокины

II. В системе врожденного иммунитета основными продуцентами цитокинов являются клетки миелоидного ряда. С помощью Toll-по- добных рецепторов (TLRs) они распознают сходные молекулярные структуры различных патогенов, так называемые патогенассоциированные молекулярные патерны (РАМП), например липополисахарид (ЛПС) грамотрицательных бактерий, липотейхоевые кислоты, пептидогликаны грамположительных микроорганизмов, флагеллин, ДНК, богатую неметилированными СрG повторами, и др. В результате

такого взаимодействия с TLR запускается внутриклеточный каскад передачи сигнала, приводящий к экспрессии генов двух основных групп цитокинов: провоспалительных и ИФН типа 1 (рис. 7.4, см. также цв. вклейку). Главным образом эти цитокины (ИЛ-1, -6, -8, -12, ФНОа, ГМ-КСФ, ИФН, хемокины и др.) индуцируют развитие воспаления и участвуют в защите организма от бактериальных и вирусных инфекций.

Рис. 7.3. Спектр цитокинов, секретируемых ТЫ1- и ТЫ2-клетками

III. Клетки, не относящиеся к иммунной системе (клетки соединительной ткани, эпителия, эндотелия), конститутивно секретируют аутокринные факторы роста (ФРФ, ЕФР, ТФРр и др.). и цитокины, поддерживающие пролиферацию гемопоэтических клеток.

Цитокины и их антагонисты подробно описаны в ряде монографий (Ковальчук Л.В. и соавт., 2000; Кетлинский С.А., Симбирцев А.С.,

Рис. 7.4. TLR-опосредованная индукция выработки цитокинов клетками врожденного иммунитета

Избыточная экспрессия цитокинов небезопасна для организма и может привести к развитию чрезмерной воспалительной реакции, острофазового ответа. В регуляции выработки провоспалительных цитокинов принимают участие различные ингибиторы. Так, описан ряд веществ, которые неспецифически связывают цитокин ИЛ-1 и препятствуют проявлению его биологического действия (а2-макроглобулин, С3-компонент комплемента, уромодулин). Специфическими ингибиторами ИЛ-1 могут быть растворимые рецепторы-ловушки, антитела и рецепторный антагонист ИЛ-1 (ИЛ-1RA). При развитии воспаления происходит усиление экспрессии гена ИЛ-1RA. Но и в норме этот антагонист присутствует в крови в высокой концентрации (до 1 нг/мл и более), блокируя действие эндогенного ИЛ-1.

Клетки-мишени

Действие цитокинов на клетки-мишени опосредуются через специфические рецепторы, связывающие цитокины с очень высокой аффинностью, причем отдельные цитокины могут использовать

общие субъединицы рецепторов. Каждый цитокин связывается со своим специфическим рецептором.

Рецепторы цитокинов представляют собой трансмембранные белки и делятся на 5 основных типов. Наиболее распространен так называемый гемопоэтиновый тип рецепторов, имеющих два экстраклеточных домена, один из которых содержит общую последовательность аминокислотных остатков двух повторов триптофана и серина, разделенных любой аминокислотой (WSXWS-мотив). Второй тип рецепторов может иметь два внеклеточных домена с большим количеством консервативных цистеинов. Это рецепторы семейства ИЛ-10 и ИФН. Tретий тип представлен рецепторами цитокинов, относящихся к группе ФНО. Четвертый тип рецепторов цитокинов принадлежит к суперсемейству иммуноглобулиновых рецепторов, имеющих внеклеточные домены, напоминающие по строению домены молекул иммуноглобулинов. Пятый тип рецепторов, связывающих молекулы семейства хемокинов, представлен трансмембранными белками, пересекающими клеточную мембрану в 7 местах. Рецепторы цитокинов могут существовать в растворимой форме, сохраняя способность связывать лиганды (Кетлинский С.А. и др., 2008).

Цитокины способны влиять на пролиферацию, дифференцировку, функциональную активность и апоптоз клеток-мишеней (см. рис. 7.1). Проявление биологической активности цитокинов в клетках-мишенях зависит от участия различных внутриклеточных систем в передаче сигнала от рецептора, что связано с особенностями клеток-мишеней. Сигнал к апоптозу проводится в том числе с помощью специфического участка семейства рецепторов ФНО, так называемого домена «смерти» (рис. 7.5, см. цв. вклейку). Дифференцировочный и активирующий сигналы передаются посредством внутриклеточных белков Jak-STAT - сигнальных трансдукторов и активаторов транскрипции (рис. 7.6, см. цв. вклейку). G-белки участвуют в передаче сигнала от хемокинов, что приводит к усилению миграции и адгезии клеток.

В комплексный анализ системы цитокинов входит следующее.

I. Оценка клеток-продуцентов.

1. Определение экспрессии:

Рецепторов, распознающих патоген или антиген TКР, TLR) на уровне генов и молекулы белка (ПЦР, метод проточной цитофлуориметрии);

Адаптерных молекул, проводящих сигнал, запускающий транскрипцию цитокиновых генов (ПЦР и др.);

Рис. 7.5. Передача сигнала с ФНО-рецептора

Рис. 7.6. Jak-STAT - сигнальный путь с цитокиновых рецепторов типа 1

Генов цитокинов (ПЦР); белковых молекул цитокинов (оценка цитокинсинтезирующей функции мононуклеарных клеток человека).

2. Количественное определение субпопуляций клеток, содержащих те или иные цитокины: Th1, Th2 Th17 (метод внутриклеточного окрашивания цитокинов); определение количества клеток, секретирующих определенные цитокины (метод ELISPOT, см. гл. 4).

II. Оценка цитокинов и их антагонистов в биологических средах организма.

1. Tестирование биологической активности цитокинов.

2. Количественное определение цитокинов с помощью ИФА.

3. Иммуногистохимическое окрашивание цитокинов в тканях.

4. Определение соотношения оппозитных цитокинов (про- и противовоспалительных), цитокинов и антагонистов рецепторов цитокинов.

III. Оценка клеток-мишеней.

1. Определение экспрессии рецепторов цитокинов на уровне генов и белковой молекулы (ПЦР, метод проточной цитофлуориметрии).

2. Определение сигнальных молекул во внутриклеточном содержимом.

3. Определение функциональной активности клеток-мишеней.

В настоящее время разработаны многочисленные методы оценки системы цитокинов, которые дают разноплановую информацию. Среди них различают:

1) молекулярно-биологические методы;

2) методы количественного определения цитокинов с помощью иммуноанализа;

3) тестирование биологической активности цитокинов;

4) внутриклеточное окрашивание цитокинов;

5) метод ELISPOT, позволяющий выявить цитокины вокруг единичной цитокинпродуцирующей клетки;

6) иммунофлюоресценцию.

Приводим краткую характеристику этих методов.

С помощью молекулярно-биологических методов можно исследовать экспрессию генов цитокинов, их рецепторов, сигнальных молекул, изучать полиморфизм указанных генов. В последние годы выполнено большое число работ, выявивших ассоциации между вариантами аллелей генов молекул системы цитокинов и предрасположенностью

к ряду заболеваний. Изучение аллельных вариантов генов цитокинов может дать информацию о генетически запрограммированной продукции того или иного цитокина. Наиболее чувствительной считается полимеразная цепная реакция в реальном времени - ПЦР-РВ (см. гл. 6). Метод гибридизации in situ позволяет уточнить тканевую и клеточную локализацию экспрессиии цитокиновых генов.

Количественное определение цитокинов в биологических жидкостях и в культурах мононуклеарных клеток периферической крови методом ИФА можно охарактеризовать следующим образом. Поскольку цитокины являются локальными медиаторами, более целесообразно измерять их уровни в соответствующих тканях после экстракции тканевых протеинов или в естественных жидкостях, например в слезе, смывах из полостей, моче, амниотической жидкости, спинномозговой жидкости и т.д. Уровни цитокинов в сыворотке или других биологических жидкостях отражают текущее состояние иммунной системы, т.е. синтез цитокинов клетками организма in vivo.

Определение уровней продукции цитокинов мононуклеарами периферической крови (МНК) показывает функциональное состояние клеток. Спонтанная продукция цитокинов МНК в культуре свидетельствует, что клетки уже активированы in vivo. Индуцированный (различными стимуляторами, митогенами) синтез цитокинов отражает потенциальную, резервную способность клеток отвечать на антигенный стимул (в частности, на действие лекарственных препаратов). Сниженная индуцированная продукция цитокинов может служить одним из признаков иммунодефицитного состояния. Цитокины не специфичны в отношении конкретного антигена. Поэтому специфическая диагностика инфекционных, аутоиммунных и аллергических заболеваний с помощью определения уровня тех или иных цитокинов невозможна. В то же время оценка уровней цитокинов позволяет получить данные о тяжести воспалительного процесса, его переходе на системный уровень и прогнозе, функциональной активности клеток иммунной системы, о соотношении Th1- и Th2-клеток, что очень важно при дифференциальной диагностике ряда инфекционных и иммунопатологических процессов.

В биологических средах можно определить цитокины количественно с помощью целого ряда методов иммуноанализа, используя поликлональные и моноклональные антитела (см. гл. 4). ИФА позволяет узнать, каковы точные концентрации цитокинов в био-

логических жидкостях организма. Иммуноферментное выявление цитокинов имеет ряд преимуществ перед другими методами (высокая чувствительность, специфичность, независимость от присутствия антагонистов, возможность точного автоматизированного учета, стандартизации учета). Однако и этот метод имеет свои ограничения: ИФА не характеризует биологическую активность цитокинов, может давать ложные результаты за счет перекрестно-реагирующих эпитопов.

Биологическое тестирование проводят на основе знания основных свойств цитокинов, их действия на клетки-мишени. Изучение биологических эффектов цитокинов позволило разработать четыре разновидности тестирования цитокинов:

1) по индукции пролиферации клеток-мишеней;

2) по цитотоксическому эффекту;

3) по индукции дифференцировки костно-мозговых предшественников;

4) по противовирусному действию.

ИЛ-1 определяют по стимулирующему действию на пролиферацию мышиных тимоцитов, активированных митогеном in vitro; ИЛ-2 - по способности стимулировать пролиферативную активность лимфобластов; по цитотоксическому действию на мышиные фибробласты (L929) тестируют ФНОа и лимфотоксины. Колониестимулирующие факторы оценивают по их способности поддерживать рост костномозговых предшественников в виде колоний в агаре. Противовирусную активность ИФН выявляют по угнетению цитопатического действия вирусов в культуре диплоидных фибробластов человека и опухолевой линии фибробластов мышей L-929.

Созданы клеточные линии, рост которых зависит от присутствия определенных цитокинов. В табл. 7.1 представлен список клеточных линий, используемых для тестирования цитокинов. По способности индуцировать пролиферацию чувствительных клеток-мишеней проводят биотестирование ИЛ-1, ИЛ-2, ИЛ-4, ИЛ-6, ИЛ-7, ИЛ-15 и др. Однако эти методы тестирования отличаются недостаточной чувствительностью и информативностью. Молекулы ингибиторов и антагонистов могут маскировать биологическую активность цитокинов. Некоторые цитокины проявляют общую биологическую активность. Тем не менее эти методы идеальны для тестирования специфической активности рекомбинантных цитокинов.

Таблица 7.1. Клеточные линии, используемые для тестирования биологической активности цитокинов

Окончание табл. 7.1

Лабораторная работа 7-1

Определение биологической активности ИЛ-1 по комитогенному действию на пролиферацию тимоцитов мышей

В основе метода биологического тестирования ИЛ-1 лежит способность цитокина стимулировать пролиферацию мышиных тимоцитов.

ИЛ-1 может быть определен в культуре моноцитов, стимулированных ЛПС, а также в любой биологической жидкости организма. Необходимо обратить внимание на ряд деталей.

1. Для тестирования применяют тимоциты мышей линии С3Н/ HeJ, стимулированные к пролиферации митогенами (конканавалин А - КонА и фитогемагглютинин - ФГА). Тимоциты С3Н/HeJ выбраны не случайно: мыши этой инбредной линии не отвечают на ЛПС, который может находиться в составе тестируемого материала и вызывать продукцию ИЛ-1.

2. Тимоциты отвечают на ИЛ-2 и митогены, поэтому в препаратах, тестируемых на ИЛ-1, следует определять также присутствие ИЛ-2 и митогенов.

Порядок работы

1. Получают суспензию тимоцитов в концентрации 12×10 6 /мл среды RРМI 1640, содержащей 10% сыворотки эмбрионов коров и 2-меркаптоэтанол (5×10 -5 М).

2. Готовят ряд последовательных двукратных разведений опытных (биологические жидкости организма) и контрольных образцов. В качестве контрольных используют биологические жидкости, содержащие ИЛ-1 или образцы, полученные при инкубации мононуклеарных клеток без ЛПС, и лабораторный стандартный ИЛ-1-содержащий препарат. В 96-луночные круглодонные планшеты из каждого разведения переносят по 50 мкл в 6 лунок.

3. В три лунки каждого разведения добавляют по 50 мкл растворенного в полной среде очищенного ФГА (Wellcome) в концентрации 3 мкг/мл, а в другие 3 лунки - по 50 мкл среды.

4. В каждую лунку добавляют по 50 мкл суспензии тимоцитов и инкубируют в течение 48 ч при 37 °С.

6. Перед завершением культивирования в лунки вносят по 50 мкл раствора (1 мкКи/мл) [" 3 Н]-тимидина и инкубируют еще 20 ч.

7. Для определения уровня радиоактивности клетки культуры переносят на фильтровальную бумагу с помощью автоматического сборщика клеток, фильтры высушивают и определяют включение метки жидкостным сцинтилляционным счетчиком.

8. Результаты выражают в виде коэффициента стимуляции.

где m cp - среднее число импульсов в 3 лунках.

Если тимоциты отвечают на стимуляцию стандартным ИЛ-1, то индекс стимуляции исследуемого образца, превышающий 3, достоверно свидетельствует об ИЛ-1-активности.

Биоанализ является единственным методом для оценки функционирования цитокина, но данный метод должен быть дополнен разными видами соответствующего контроля на специфичность с использованием моноклональных антител. Добавление определенных моноклональных антител к цитокину в культуру блокирует биологическую активность цитокина, что доказывает: сигналом к пролиферации клеточной линии служит определяемый цитокин.

Использование биоанализа для выявления интерферона. Принцип оценки биологической активности ИФН основан на его противовирусном действии, которое определяется по степени ингибиции размножения тест-вируса в культуре клеток.

В работе могут быть использованы клетки, чувствительные к действию ИФН: первично трипсинизированные клетки-фибробласты эмбрионов кур и человека, перевиваемые клетки диплоидных фибробластов человека и культура мышиных клеток (L929).

При оценке противовирусного действия ИФН целесообразно использовать вирусы с коротким циклом размножения, высокой чувствительностью к действию ИФН: вирус энцефаломиелита мышей, везикулярного стоматита мыши и др.

Лабораторная работа 7-2

Определение активности интерферона

1. Взвесь диплоидных фибробластов плода человека на среде с 10% сывороткой эмбрионов коров (концентрация клеток - 15-20×10 6 /мл) разливают в стерильные 96-луночные плоскодонные планшеты по 100 мкл в лунку и помещают в СО 2 -инкубатор при температуре 37 °С.

2. После формирования полного монослоя из лунок удаляют ростовую среду и в каждую лунку добавляют по 100 мкл поддерживающей среды.

3. Титрование активности ИФН в исследуемых образцах проводят методом двукратных разведений на монослое фибробластов.

Одновременно с образцами в лунки вносят вирус энцефаломиелита мышей (ВЭМ) в дозе, вызывающей 100% поражение клеток через 48 ч после заражения.

4. Для контроля используют лунки с интактными (необработанными) клетками, зараженными вирусом.

В каждом исследовании в качестве референс-препаратов используют пробы референс-ИФН с известной активностью.

5. Планшеты с разведениями образца инкубируют 24 ч при температуре 37 °С в атмосфере с 5% содержанием СО 2 .

6. Уровень активности ИФН определяют величиной, обратной значению максимального разведения тестируемого образца, задерживающего цитопатическое действие вируса на 50%, и выражают ее в единицах активности на 1 мл.

7. Для определения типа ИФН в систему добавляют антисыворотку против ИФНα, ИФНβ или ИФНγ. Антисыворотка отменяет действие соответствующего цитокина, что позволяет идентифицировать тип ИФН.

Определение биологической активности миграции ингибирующего фактора. В настоящее время сформировались совершенно новые представления о природе и свойствах МИФ, открытого в 60-х годах прошлого столетия в качестве медиатора клеточного иммунитета и много лет остававшегося без должного внимания (Bloom B.R., Bennet В., 1966; David J.R., 1966). Лишь в последние 10-15 лет стало ясно: МИФ представляет собой один из важнейших биологических медиаторов в организме с широким спектром биологических функций цитокина, гормона, фермента. Действие МИФ на клетки-мишени реализуется через СD74 - -рецептор или через неклассический путь эндоцитоза.

МИФ рассматривают как важный медиатор воспаления, активирующий функцию макрофагов (выработку цитокинов, фагоцитоз, цитотоксичность и др.), а также как эндогенный иммунорегуляторный гормон, модулирующий глюкокортикоидную активность.

Накапливается все больше сведений о роли МИФ в патогенезе многих воспалительных заболеваний, включая сепсис, ревматоидный артрит (РА), гломерулонефрит и др. При РА значительно увеличена концентрация МИФ в жидкости пораженных суставов, коррелирующая с тяжестью заболевания. Под влиянием МИФ возрастает выработка провоспалительных цитокинов как макрофагами, так и синовиальными клетками.

Известны различные методы тестирования активности МИФ, когда мигрирующие клетки (клетки-мишени для МИФ) помещают в стеклянный капилляр (капиллярный тест), в каплю агарозы или в агарозный колодец.

Мы приводим сравнительно простой скрининговый метод, основанный на формировании на дне лунок 96-луночного плоскодонного планшета клеточных микрокультур (лейкоцитов или макрофагов), стандартных по площади и числу клеток, с последующим их культивированием в питательной среде и определением изменения площади этих микрокультур при действии МИФ (Суслов А.П., 1989).

Лабораторная работа 7-3

Определение МИФ-активности

Определение биологической активности МИФ проводят с помощью устройства для формирования клеточных микрокультур (рис. 7.7) - МИГРОСКРИН (НИИ эпидемиологии и микробиологии им. Н.Ф. Гамалеи РАМН).

1. В лунки 96-луночного планшета (Flow, Великобритания или аналогичные) добавляют по 100 мкл разведенной на культуральной среде пробы, в которой определяют МИФ-активность (каждое разведение в 4 параллелях, опытные пробы). Культуральная среда включает RPMI 1640, 2 mM L-глутамина, 5% сыворотки эмбриона коровы, 40 мкг/мл гентамицина.

2. В контрольные лунки добавляют культуральную среду (в 4 параллелях) по 100 мкл.

3. Готовят клеточную суспензию перитонеальных макрофагов, для чего 2 мышам-гибридам (СВАхС57В1/6)F1 внутрибрюшинно вводят по 10 мл раствора Хенкса с гепарином (10 ЕД/мл), осторожно массируют брюшко в течение 2-3 мин. Затем животное забивают декапитацией, осторожно прокалывают брюшную стенку в области паха и через иглу шприцем отсасывают экссудат. Клетки перитонеального экссудата дважды отмывают раствором Хенкса, центрифугируя их 10-15 мин при 200 g. Затем готовят суспензию клеток с концентрацией 10±1 млн/мл среды RPMI 1640. Подсчет проводят в камере Горяева.

4. Собирают систему МИГРОСКРИН, представляющую собой штатив для направленной и стандартной фиксации наконечников с клеточными культурами в строго вертикальном положении на заданной высоте над центром лунки 96-луночного культурального планшета, а также включающую 92 наконечника для автоматической пипетки фирмы «Costar», USA (рис. 7.7).

Вставляют ножки штатива в угловые лунки планшета. Клеточную суспензию набирают автоматической пипеткой в наконечники - по 5 мкл в каждый, ополаскивают от избытка клеток однократным опусканием в среду и вставляют вертикально в гнезда штатива системы. Заполненный штатив с наконечниками выдерживают при комнатной температуре в течение 1 ч на строго горизонтальной поверхности. За это время происходит оседание клеток суспензии на дно лунок, где формируются стандартные клеточные микрокультуры.

5. Штатив с наконечниками осторожно снимают с планшета. Планшет с микрокультурой клеток помещают в строго горизонтальном положении в СО 2 -инкубатор, где культивируют в течение 20 ч. В ходе культивирования клетки мигрируют по дну лунки.

6. Количественный учет результатов после инкубации проводят на бинокулярной лупе, визуально оценивая размер колонии по шкале внутри окуляра. Микрокультуры имеют форму круга. Затем исследователи определяют среднее значение диаметра колоний по результатам измерения колоний в 4 опытных или контрольных лунках. Погрешность измерения равна ±1 мм.

Индекс миграции (ИМ) рассчитывают по формуле:

Проба обладает МИФ-активностью, если значения ИМ равны

За условную единицу (ЕД) МИФ-активности принимают обратную величину, равную значению наибольшего разведения пробы (образца), при котором индекс миграции равен 0,6±0,2.

Биологическую активность ФЕO αоценивают по цитотоксическому его действию на линию трансформированных фибробластов L-929. В качестве положительного контроля используют рекомбинантный ФНОа, а в качестве отрицательного контроля - клетки в культуральной среде.

Вычисляют цитотоксический индекс (ЦИ):

где a - количество живых клеток в контроле; b - количество живых клеток в опыте.

Рис. 7.7. Схема МИГРОСКРИН - устройства для количественной оценки миграции клеточных культур

Клетки окрашивают красителем (метиленовым синим), который включается только в погибшие клетки.

За условную единицу активности ФНО принимают значение обратного разведения образца, необходимого для получения 50% клеточной цитотоксичности. Удельная активность образца - отношение активности в условных единицах на 1 мл к концентрации белка, содержащегося в образце.

Внутриклеточное окрашивание цитокинов. Изменение соотношения клеток, продуцирующих различные цитокины, может отражать патогенез заболевания и служить критерием прогноза заболевания и оценки проводимой терапии.

Методом внутриклеточного окрашивания определяют экспрессию цитокина на уровне одной клетки. Проточная цитофлуориметрия позволяет подсчитать количество клеток, экспрессирующих тот или иной цитокин.

Перечислим основные этапы определения внутриклеточных цитокинов.

Нестимулированные клетки продуцируют небольшие количества цитокинов, которые, как правило, не депонируются, поэтому важным этапом оценки внутриклеточных цитокинов являются стимуляция лимфоцитов и блокада выхода этих продуктов из клеток.

В качестве индуктора цитокинов чаще всего используют активатор протеинкиназы С форбол-12-миристат-13-ацетат (ФМА) в комбинации с ионофором кальция иономицином (ИН). Применение такого сочетания вызывает синтез широкого спектра цитокинов: ИФНу, ИЛ-4, ИЛ-2, ФНОα. Недостаток использования ФМА-ИН - проблемы выявления CD4-молекул на поверхности лимфоцитов после такой активации. Также продукцию цитокинов Т-лимфоцитами индуцируют с помощью митогенов (ФГА). В-клетки и моноциты стимулируют

Мононуклеарные клетки инкубируют в присутствии индукторов продукции цитокинов и блокатора их внутриклеточного транспорта брефельдина А или моненсина в течение 2-6 ч.

Затем клетки ресуспендируют в буферном растворе. Для фиксации добавляют 2% формальдегид, инкубируют 10-15 мин при комнатной температуре.

Потом клетки обрабатывают сапонином, который повышает проницаемость клеточной мембраны, и окрашивают моноклональными антителами, специфичными к определяемым цитокинам. Предварительное окрашивание поверхностных маркеров (CD4, CD8) увеличивает количество получаемой информации о клетке и позволяет более точно определить ее популяционную принадлежность.

Имеются некоторые ограничения в применении описанных выше методов. Так, с их помощью невозможно анализировать синтез цитокинов единичной клеткой, невозможно определить количество цитокинпродуцирующих клеток в субпопуляции, невозможно определить, экспрессируют ли цитокинпродуцирующие клетки уникальные маркеры, синтезируются ли различные цитокины разными клетками или одними и теми же. Ответ на эти вопросы получают, используя другие методы исследования. Для определения частоты цитокин-продуцирующих клеток в популяции применяют метод лимитирующих разведений и вариант иммуноферментного анализа ELISPOT (см. гл. 4).

Метод гибридизации in situ. Метод включает:

2) фиксацию параформальдегидом;

3) выявление мРНК с помощью меченой кДНК. В некоторых случаях цитокиновую мРНК определяют на срезах с помощью радиоизотопной ПЦР.

Иммунофлюоресценция. Метод включает:

1) замораживание органа и приготовление криостатных срезов;

2) фиксацию;

3) обработку срезов меченными флюоресцеином антицитокиновыми антителами;

4) изуальное наблюдение флюоресценции.

Эти методики (гибридизация in situ и иммунофлюоресценция) быстры и не зависят от пороговых концентраций секретируемого продукта. Однако они не определяют количество секретированного цитокина и могут быть сложны технически. Необходим разнообразный тщательный контроль на неспецифические реакции.

С помощью представленных методов оценки цитокинов были выявлены патологические процессы, связанные с нарушениями в системе цитокинов на различных уровнях.

Таким образом, оценка системы цитокинов чрезвычайно важна для характеристики состояния иммунной системы организма. Изучение различных уровней системы цитокинов позволяет получить информацию о функциональной активности разных типов иммунокомпетентных клеток, о тяжести воспалительного процесса, о его переходе на системный уровень и о прогнозе заболевания.

Вопросы и задания

1. Перечислите общие свойства цитокинов.

2. Приведите классификацию цитокинов.

3. Перечислите основные компоненты системы цитокинов.

4. Перечислите клетки-продуценты цитокинов.

5. Охарактеризуйте семейства рецепторов цитокинов.

6. Каковы механизмы функционирования сети цитокинов?

7. Расскажите о выработке цитокинов в системе врожденного иммунитета.

8. Каковы основные подходы к комплексной оценке системы цитокинов?

9. Каковы методы тестирования цитокинов в биологических жидкостях организма?

10. Каковы дефекты в системе цитокинов при различных патологиях?

11. Каковы основные методы биологического тестирования ИЛ-1, ИФН, МИФ, ФНОа в биологических жидкостях?

12. Опишите процесс определения внутриклеточного содержания цитокинов.

13. Опишите процесс определения цитокинов, секретируемых единичной клеткой.

14. Опишите последовательность применяемых методов выявления дефекта на уровне рецептора цитокина.

15. Опишите последовательность методов, применяемых для выявления дефекта на уровне клеток-продуцентов цитокинов.

16. Какую информацию можно получить, исследуя выработку цитокинов в культуре мононуклеарных клеток, в сыворотке крови?