Химический состав клетки кратко биология. Клетка

Клетка: химический состав, строение, функции органоидов.

2.3 Химический состав клетки. Макро- и микроэлементы. Взаимосвязь строения и функций неорганических и органических веществ (белков, нуклеиновых кислот, углеводов, липидов, АТФ), входящих в состав клетки. Роль химических веществ в клетке и организме человека.

Химические элементы, входящие в состав организмов.

Говоря о химическом составе клетки, следует помнить, что речь может идти либо о химических элементах, либо о химических веществах. Начнем с химических элементов.

В состав живых тел входят те же химические элементы, что образуют и неживые тела. Это говорит о единстве живой и неживой материи. Однако в живых телах содержание тех или иных элементов заметно отличается.

Назовем основные элементы и их значение.

    Углерод (С), водород (H ), кислород (O ) и азот (N ) составляют 98% массы живого организма. Первые три элемента входят в состав всех органических веществ организма. Азот (здесь и далее имеются в виду элементы) входит в состав белков и нуклеиновых кислот.

    Сера (S ) входит в состав некоторых аминокислот, а значит и в состав белков.

    Йод (I ) необходим для нормальной работы щитовидной железы, т.к. входит в состав её гормонов.

    Фосфор (P ) является важным элементом молекул АТФ и нуклеиновых кислот. А также, в виде фосфатов, входит в состав костной ткани.

    Железо входит в состав гемоглобина крови и участвует в транспорте газов.

    Магний (Mg ) – центральный атом в молекуле хлорофилла.

    Кальций (Ca ) в составе нерастворимых соединений участвует в образовании опорных (костная ткань) и защитных (раковины моллюсков) структур.

    Калий (K ) и натрий (Na ) в виде ионов имеют большое значение для поддержания постоянства состава внутренней среды, а также участвуют в формировании нервного импульса в нервных клетках.

Химические вещества клетки.

Углеводы .

Основная функция углеводов – энергетическая. Кроме того, они входят в состав поверхностного слоя оболочки (гликокаликса ) животной клетки и в состав клеточной стенки бактерий, грибов и растений, выполняя строительную (структурную) функцию.

По строению углеводы делятся на моносахариды, дисахариды и полисахариды. Среди моносахаридов наиболее важны глюкоза (основной источник энергии), рибоза (входит в состав РНК), дезоксирибоза (входит в состав ДНК). Основными полисахаридами являются целлюлоза и крахмал у растений, гликоген и хитин у животных и грибов. Все полисахариды являются полимерами регулярного строения, т.е. состоят только из одного вида мономеров. Например, мономером крахмала, гликогена и целлюлозы является глюкоза.

Липиды.

Липиды тоже выполняют энергетическую функцию, и при этом дают вдвое больше энергии на 1 г вещества, чем углеводы. Но особенно важна их строительная функция, т.к. именно двойной слой липидов (а если быть совсем точным, то фосфолипидов) является основой биологических мембран. Кроме того, подкожная жировая клетчатка (у тех, у кого она есть) выполняет функцию механической защиты и терморегуляции.

Белки.

Белки – биополимеры нерегулярного строения, мономерами которых являются аминокислоты . В состав белков входит 20 видов аминокислот, при этом количество аминокислот и последовательность их соединения в разных белковых молекулах отличается. В результате белки имеют очень разнообразное строение и, как следствие, разнообразные свойства и функции.

Уровни организации белковой молекулы (структура белка).

Ниже представлен классический рисунок, изображающий различные уровни организации молекулы гемоглобина. Первичная, вторичная, третичная и четвертичная структуры обозначены цифрами 1-4 соответственно.

Функции белков.

    Строительная функция белков одна из самых важных, поскольку они входят в состав всех клеточных структур (мембран, органоидов и цитоплазмы). Фактически белки – основной строительный материал для организма. Рост и развитие организма без достаточного количества белка не могут происходить нормально. Именно поэтому растущий организм должен обязательно получать с пищей белки.

    Ферментативная функция белков не менее важна. Большинство химических реакций, происходящих в клетке, были бы не возможны без участия биологических катализаторов – ферментов. Почти все ферменты (энзимы) по своей природе являются белками. Каждый фермент ускоряет только одну реакцию (или реакцию одного типа). В этом выражается специфичность ферментов. Кроме того, ферменты действуют в довольно узком диапазоне температур. Повышение температуры приводит к их денатурации и потере каталитической активности. Примером типичного фермента является каталаза, расщепляющая пероксид водорода, образовавшийся в ходе обмена, на воду и кислород (2 H 2 O 2 → 2 H 2 O + O 2 ). Действие каталазы можно наблюдать при обработке перекисью кровоточащей раны. Выделяющийся газ - кислород. Можно также обработать перекисью нарезанные клубни картофеля. Произойдет то же самое.

    Транспортная функция белков заключается в переносе различных веществ. Одни белки осуществляют транспорт в масштабах целого организма. Например, гемоглобин крови переносит кислород и углекислый газ по всему телу. Другие белки, встроенные в мембраны клеток, обеспечивают транспорт различных веществ в клетку и из неё. Типичный пример калий-натриевый насос – сложный белковый комплекс, выкачивающий из клетки натрий и закачивающий в неё калий.

    Двигательную функцию белков не надо путать с транспортной. В данном случае речь идет о движении организма или отдельных его частей относительно друг друга. В качестве примера можно привести белки, входящие в состав мышечной ткани: актин и миозин. Взаимодействие этих белков и обеспечивает сокращение мышечного волокна.

    Защитная функция выполняется многими специфическими белками. Антитела, вырабатываемые лимфоцитами в кровь, защищают организм от болезнетворных микроорганизмов. Особые клеточные белки интерфероны обеспечивают противовирусную защиту. Протромбин плазмы участвуют в свертывании крови, предохраняя организм от потерь крови.

    Регуляторную функцию выполняют белки, являющиеся гормонами. Типичный белковый гормон инсулин регулирует содержание глюкозы в крови. Ещё один белковый гормон – гормон роста.

Денатурация и ренатурация белков.

Важнейшей особенностью большинства белков является неустойчивость их структуры при нефизиологических условиях. При повышении температуры, изменении pH среды, воздействии растворителей и т.п. связи, поддерживающие пространственную структуру белка, разрушаются. Происходит денатурация , т.е. нарушение природной структуры белка. В первую очередь разрушаются четвертичная и третичная структуры. Если действие неблагоприятного фактора не прекращается или усиливается, то разрушаются вторичная и даже первичная структура. Разрушение первичной структуры – разрыв связей между аминокислотами – означает конец существованию молекулы белка. Если же первичная структура сохраняется, то при благоприятных условиях белок может восстановить свою пространственную структуру, т.е. произойдет ренатурация .

Например, при жарке яиц под влияние высокой температуры с яичным белком происходят следующие изменения: был жидким и прозрачным, стал твердым и непрозрачным. Однако, после остывания белок не становится опять прозрачным и жидким. В данном случае ренатурация не происходит, т.к. при жарке разрушилась первичная структура белка.

Нуклеиновые кислоты.

Нуклеиновые кислоты , так же как и белки, являются полимерами нерегулярного строения. Мономерами нуклеиновых кислот являются нуклеотиды . Схематичное строение нуклеотида представлено на рисунке 2. Как видим, каждый нуклеотид состоит из трех компонентов: азотистого основания (многоугольник), углевода (пятиугольник) и остатка фосфорной кислоты (кружок).

Сравнительная характеристика ДНК и РНК

Хранение и передача наследственной информации.

Регуляция процессов жизнедеятельности клетки.

Биосинтез белка (т.е. по сути процесс реализации генетической информации).

Виды РНК и их роль в биосинтезе белка.

    Информационная РНК (иРНК) – переносит информацию о первичной структуре белка от ДНК к рибосомам.

    Транспортная РНК (тРНК) – доставляет аминокислоты к рибосомам.

    Рибосомальная РНК (рРНК) – входит в состав рибосом, т.е. также участвует в синтезе белка.

Строение молекулы ДНК.

Современная модель строения ДНК предложена Д.Уотсоном и Ф.Криком. Молекула ДНК представляет собой две цепочки нуклеотидов, спирально закрученные друг вокруг друга. Азотистые основания направлены внутрь молекулы так, что напротив аденина одной цепочки всегда расположен тимин другой цепочки, а напротив гуанина расположен цитозин. Аденин – тимин и гуанин – цитозин комплементарны, а принцип их расположения в молекуле ДНК называется принципом комплементарности. Между аденином и тимином образуются две водородные связи, а между цитозином и гуанином – три. Таким образом, две цепочки нуклеотидов в молекуле ДНК соединяются множеством непрочных водородных связей.

Следствием комплементарности пар А-Т и Г-Ц является то, что количество адениловых (А) нуклеотидов в ДНК всегда равно количеству тимидиловых (Т). И точно также число гуаниловых (Г) и цитидиловых (Ц) нуклеотидов также будет одинаково. Например, если в ДНК 10% нуклеотидов с аденином, то нуклеотидов с тимином будет тоже 10%, а с гуанином и цитозином по 40% каждого.

Элементы содержания, проверяемые на ЕГЭ:

2.4 Строение клетки. Взаимосвязь строения и функций частей и органоидов клетки – основа ее целостности.

Строение эукариотической клетки

1) Ограничивает содержимое клетки, выполняет защитную функцию.

2) Осуществляет избирательный транспорт.

3) Обеспечивает связь клеток в многоклеточном организме.

Ядро

Имеет двойную мембрану. Внутри находится хроматин (ДНК с белками), а также одно или несколько ядрышек (место сборки субъединиц рибосом). Связь с цитоплазмой осуществляется через ядерные поры.

1) Хранение и передача наследственной информации.

2) Контроль и управление процессами жизнедеятельности клетки.

Цитоплазма

Внутренняя среда клетки, включающая жидкую часть, органоиды и включения. Осуществляет взаимосвязь всех клеточных структур

Митохондрии

Имеют двойную мембрану. Внутренняя мембрана образует складки – кристы , на которых расположены ферментные комплексы, синтезирующие АТФ. Имеют собственные рибосомы и кольцевую ДНК

Синтез АТФ

Эндоплазматическая сеть (ЭПС)

Сеть канальцев и полостей, пронизывающих всю клетку. На мембране шероховатой ЭПС расположены рибосомы. На мембране гладкой ЭПС их нет.

Осуществляет транспорт веществ, связывая различные органиоды. Шероховатая ЭПС также участвует в синтезе белков, а гладкая – в синтезе углеводов и липидов.

Аппарат Гольджи

Система плоских емкостей (цистерн).

1) Накопление, сортировка, упаковка и подготовка к экспорту из клетки синтезированных белков.

2) Образование лизосом.

Лизосомы

Пузырьки, заполненные разнообразными ферментами.

Внутриклеточное переваривание.

Рибосомы

Состоят из двух субъединиц, образованных белками и рРНК.

Синтез белка.

Клеточный центр

У животных и низших растений включает две центриоли , образованные девятью триплетами микротрубочек.

Участвует в делении клетки и формировании цитоскелета.

Органоиды движения (реснички, жгутики).

Представляют собой цилиндр, стенка которого состоит из девяти пар микротрубочек. Ещё две расположены по центру.

Движение.

Пластиды (имеются только у растений)

Хромопласты (желтые - красные) придают окраску цветам и плодам, что привлекает опылителей и распространителей плодов и семян. Лейкопласты (бесцветные) накапливают крахмал. Хлоропласты (зеленые) осуществляют фотосинтез.

Хлоропласты

Имеют двойную мембрану. Внутренняя мембрана образует складки в виде стопок монет – граны . Отдельная «монетка» - тилакоид . Имеют кольцевую ДНК и рибосомы.

Транспорт через плазматическую мембрану.

Пассивный транспорт происходит без затрат энергии (т.е. без затрат АТФ). Основной вид - диффузия. Путем диффузии в клетку попадает кислород, выделяется углекислый газ.

Активный транспорт идет с затратами энергии. Основные способы:

    Транспорт с помощью клеточных насосов. Особые белковые комплексы, встроенные в мембрану, переносят в клетку одни ионы и выкачивают другие. Например, калий-натриевый насос выкачивает из клетки Na + , а закачивает K + . На его работу расходуется АТФ.

    Фагоцитоз – поглощение клеткой твердых частиц. Мембрана клетки образует выпячивания, которые постепенно смыкаются, и поглощаемая частица оказывается в цитоплазме.

    Пиноцитоз – поглощение клеткой капелек жидкости. Происходит аналогично фагоцитозу.

Клетка – элементарная единица жизни на Земле. Она обладает всеми признаками живого организма: растет, размножается, обменивается с окружающей средой веществами и энергией, реагирует на внешние раздражители. Начало биологической эволюции связано с появлением на Земле клеточных форм жизни. Одноклеточные организмы представляют собой существующие отдельно друг от друга клетки. Тело всех многоклеточных – животных и растений – построено из большего или меньшего числа клеток, которые являются своего рода блоками, составляющими сложный организм. Независимо от того, представляет ли собой клетка целостную живую систему – отдельный организм или составляет лишь его часть, она наделена набором признаков и свойств, общим для всех клеток.

Химический состав клетки

В клетках обнаружено около 60 элементов периодической системы Менделеева, встречающихся и в неживой природе. Это одно из доказательств общности живой и неживой природы. В живых организмах наиболее распространены водород , кислород , углерод и азот , которые составляют около 98% массы клеток. Такое обусловлено особенностями химических свойств водорода, кислорода, углерода и азота, вследствие чего они оказались наиболее подходящими для образования молекул, выполняющих биологические функции. Эти четыре элемента способны образовывать очень прочные ковалентные связи посредством спаривания электронов, принадлежащих двум атомам. Ковалентно связанные атомы углерода могут формировать каркасы бесчисленного множества различных органических молекул. Поскольку атомы углерода легко образуют ковалентные связи с кислородом, водородом, азотом, а также с серой, органические молекулы достигают исключительной сложности и разнообразия строения.

Кроме четырех основных элементов в клетке в заметных количествах (10 ые и 100 ые доли процента) содержатся железо , калий , натрий , кальций , магний , хлор , фосфор и сера . Все остальные элементы (цинк , медь , йод , фтор , кобальт , марганец и др.) находятся в клетке в очень малых количествах и поэтому называются микроэлементами.

Химические элементы входят в состав неорганических и органических соединений. К неорганическим соединениям относятся вода, минеральные соли, диоксид углерода, кислоты и основания. Органические соединения – это белки , нуклеиновые кислоты , углеводы , жиры (липиды) и липоиды .

Некоторые белки содержат серу . Составной частью нуклеиновых кислот является фосфор . Молекула гемоглобина включает железо , магний участвует в построении молекулы хлорофилла . Микроэлементы, несмотря на крайне низкое содержание в живых организмах, играют важную роль в процессах жизнедеятельности. Йод входит в состав гормона щитовидной железы – тироксина, кобальт – в состав витамина В 12 гормон островковой части поджелудочной железы – инсулин – содержит цинк . У некоторых рыб место железа в молекулах пигментов, переносящих кислород, занимает медь.

Неорганические вещества

Вода

Н 2 О – самое распространенное соединение в живых организмах. Содержание ее в разных клетках колеблется в довольно широких пределах: от 10% в эмали зубов до 98% в теле медузы, но среднем она составляет около 80% массы тела. Исключительно важная роль воды в обеспечении процессов жизнедеятельности обусловлена ее физико-химическими свойствами. Полярность молекул и способность образовывать водородные связи делают воду хорошим растворителем для огромного количества веществ. Большинство химических реакций, протекающих в клетке, может происходить только в водном растворе. Вода участвует и во многих химических превращениях.

Общее число водородных связей между молекулами воды изменяется в зависимости от t°. При t° таяния льда разрушается примерно 15% водородных связей, при t° 40°С – половина. При переходе в газообразное состояние разрушаются все водородные связи. Этим объясняется высокая удельная теплоемкость воды. При изменении t° внешней среды вода поглощает или выделяет теплоту вследствие разрыва или новообразования водородных связей. Таким путем колебания t° внутри клетки оказываются меньшими, чем в окружающей среде. Высокая теплота испарения лежит в основе эффективного механизма теплоотдачи у растений и животных.

Вода как растворитель принимает участие в явлениях осмоса, играющего важную роль в жизнедеятельности клетки организма. Осмосом называют проникновение молекул растворителя через полупроницаемую мембрану в раствор какого-либо вещества. Полупроницаемыми называются мембраны, которые пропускают молекулы растворителя, но не пропускают молекулы (или ионы) растворенного вещества. Следовательно, осмос – односторонняя диффузия молекул воды в направлении раствора.

Минеральные соли

Большая часть неорганических в-в клетки находится в виде солей в диссоциированном, либо в твердом состоянии. Концентрация катионов и анионов в клетке и в окружающей ее среде неодинакова. В клетке содержится довольно много К и очень много Nа. Во внеклеточной среде, например в плазме крови, в морской воде, наоборот, много натрия и мало калия. Раздражимость клетки зависит от соотношения концентраций ионов Na + , K + , Ca 2+ , Mg 2+ . В тканях многоклеточных животных К входит в состав многоклеточного вещества, обеспечивающего сцепленность клеток и упорядоченное их расположение. От концентрации солей в большой мере зависят осмотическое давление в клетке и ее буферные свойства. Буферностью называется способность клетки поддерживать слабощелочную реакцию ее содержимого на постоянном уровне. Буферность внутри клетки обеспечивается главным образом ионами Н 2 РО 4 и НРО 4 2- . Во внеклеточных жидкостях и в крови роль буфера играют Н 2 СО 3 и НСО 3 — . Анионы связывают ионы Н и гидроксид-ионы (ОН —), благодаря чему реакция внутри клетки внеклеточных жидкостей практически не меняется. Нерастворимые минеральные соли (например, фосфорнокислый Са) обеспечивает прочность костной ткани позвоночных и раковин моллюсков.

Органические вещества клетки


Белки

Среди органических веществ клетки белки стоят на первом месте как по количеству (10 – 12% от общей массы клетки), так и по значению. Белки представляют собой высокомолекулярные полимеры (с молекулярной массой от 6000 до 1 млн. и выше), мономерами которых являются аминокислоты. Живыми организмами используется 20 аминокислот, хотя их существует значительно больше. В состав любой аминокислоты входит аминогруппа (-NH 2), обладающая основными свойствами, и карбоксильная группа (-СООН), имеющая кислотные свойства. Две аминокислоты соединяются в одну молекулу путем установления связи HN-CO с выделением молекулы воды. Связь между аминогруппой одной аминокислоты и карбоксилом другой называется пептидной. Белки представляют собой полипептиды, содержащие десятки и сотни аминокислот. Молекулы различных белков отличаются друг от друга молекулярной массой, числом, составом аминокислот и последовательностью расположения их в полипептидной цепи. Понятно поэтому, что белки отличаются огромным разнообразием, их количество у всех видов живых организмов оценивается числом 10 10 – 10 12 .

Цепь аминокислотных звеньев, соединенных ковалентное пептидными связями в определенной последовательности, называется первичной структурой белка. В клетках белки имеют вид спирально закрученных волокон или шариков (глобул). Это объясняется тем, что в природном белке полипептидная цепочка уложена строго определенным образом в зависимости от химического строения входящих в ее состав аминокислот.

Вначале полипептидная цепь сворачивается в спираль. Между атомами соседних витков возникает притяжение и образуются водородные связи, в частности, между NH- и СО- группами, расположенными на соседних витках. Цепочка аминокислот, закрученная в виде спирали, образует вторичную структуру белка. В результате дальнейшей укладки спирали возникает специфичная для каждого белка конфигурация, называемая третичной структурой. Третичная структура обусловлена действием сил сцепления между гидрофобными радикалами, имеющимися у некоторых аминокислот, и ковалентными связями между SH- группами аминокислоты цистеина (S-S- связи). Количество аминокислот гидрофобными радикалами и цистеина, а также порядок их расположения в полипептидной цепочке специфичны для каждого белка. Следовательно, особенности третичной структуры белка определяются его первичной структурой. Биологическую активность белок проявляет только в виде третичной структуры. Поэтому замена даже одной аминокислоты в полипептидной цепочке может привести к изменению конфигурации белка и к снижению или утрате его биологической активности.

В некоторых случаях белковые молекулы объединяются друг с другом и могут выполнять свою функцию только в виде комплексов. Так, гемоглобин – это комплекс из четырех молекул и только в такой форме способен присоединять и транспортировать О. подобные агрегаты представляют собой четвертичную структуру белка. По своему составу белки делятся на два основных класса – простые и сложные. Простые белки состоят только из аминокислот нуклеиновые кислоты (нуклеотиды), липиды (липопротеиды), Ме (металлопротеиды), Р (фосфопротеиды).

Функции белков в клетке чрезвычайно многообразны. Одна из важнейших – строительная функция: белки участвуют в образовании всех клеточных мембран и органоидов клетки, а также внутриклеточных структур. Исключительно важное значение имеет ферментативная (каталитическая) роль белков. Ферменты ускоряют химические реакции, протекающие в клетке, в 10 ки и 100 ни миллионов раз. Двигательная функция обеспечивается специальными сократительными белками. Эти белки участвуют во всех видах движений, к которым способны клетки и организмы: мерцание ресничек и биение жгутиков у простейших, сокращение мышц у животных, движение листьев у растений и др. Транспортная функция белков заключается в присоединении химических элементов (например, гемоглобин присоединяет О) или биологически активных веществ (гормонов) и переносе их к тканям и органам тела. Защитная функция выражается в форме выработки особых белков, называемых антителами, в ответ на проникновение в организм чужеродных белков или клеток. Антитела связывают и обезвреживают чужеродные вещества. Белки играют немаловажную роль как источники энергии. При полном расщеплении 1г. белков выделяется 17,6 кДж (~4,2 ккал).

Углеводы

Углеводы, или сахариды – органические вещества с общей формулой (СН 2 О) n . У большинства углеводов число атомов Н вдвое больше числа атомов О, как в молекулах воды. Поэтому эти вещества и были названы углеводами. В живой клетке углеводы находятся в количествах, не превышающих 1-2, иногда 5% (в печени, в мышцах). Наиболее богаты углеводами растительные клетки, где их содержание достигает в некоторых случаях 90% от массы сухого вещества (семена, клубни картофеля и т.д.).

Углеводы бывают простые и сложные. Простые углеводы называются моносахаридами. В зависимости от числа атомов углевода в молекуле моносахариды называются триозами, тетрозами, пентозами или гексозами. Из шести углеродных моносахаридов – гексоз – наиболее важное значение имеют глюкоза, фруктоза и галактоза. Глюкоза содержится в крови (0,1-0,12%). Пентозы рибоза и дезоксирибоза входят в состав нуклеиновых кислот и АТФ. Если в одной молекуле объединяются два моносахарида, такое соединение называется дисахаридом. Пищевой сахар, получаемый из тростника или сахарной свеклы, состоит из одной молекулы глюкозы и одной молекулы фруктозы, молочный сахар – из глюкозы и галактозы.

Сложные углеводы, образованные многими моносахаридами, называются полисахаридами. Мономером таких полисахаридов, как крахмал, гликоген, целлюлоза, является глюкоза. Углеводы выполняют две основные функции: строительную и энергетическую. Целлюлоза образует стенки растительных клеток. Сложный полисахарид хитин служит главным структурным компонентом наружного скелета членистоногих. Строительную функцию хитин выполняет и у грибов. Углеводы играют роль основного источника энергии в клетке. В процессе окисления 1 г. углеводов освобождается 17,6 кДж (~4,2 ккал). Крахмал у растений и гликоген у животных откладываются в клетках и служат энергетическим резервом.

Нуклеиновые кислоты

Значение нуклеиновых кислот в клетке очень велико. Особенности их химического строения обеспечивают возможность хранения, переноса и передачи по наследству дочерним клеткам информации о структуре белковых молекул, которые синтезируются в каждой ткани на определенном этапе индивидуального развития. Поскольку большинство свойств и признаков клеток обусловлено белками, то понятно, что стабильность нуклеиновых кислот – важнейшее условие нормальной жизнедеятельности клеток и целых организмов. Любые изменения структуры клеток или активности физиологических процессов в них, влияя, таким образом, на жизнедеятельность. Изучение структуры нуклеиновых кислот имеет исключительно важное значение для понимания наследования признаков у организмов и закономерностей функционирования, как отдельных клеток, так и клеточных систем – тканей и органов.

Существуют 2 типа нуклеиновых кислот – ДНК и РНК. ДНК – полимер, состоящий из двух нуклеотидных спиралей, заключенных так, что образуется двойная спираль. Мономеры молекул ДНК представляют собой нуклеотиды, состоящие из азотистого основания (аденина, тимина, гуанина или цитозина), углевода (дезоксирибозы) и остатка фосфорной кислоты. Азотистые основания в молекуле ДНК соединены между собой неодинаковым количеством Н-связей и располагаются попарно: аденин (А) всегда против тимина (Т), гуанин (Г) против цитозина (Ц).

Нуклеотиды соединены друг с другом не случайно, а избирательно. Способность к избирательному взаимодействию аденина с тимином и гуанина с цитозином называется комплементарностью. Комплементарное взаимодействие определенных нуклеотидов объясняется особенностями пространственного расположения атомов в их молекулах, которые позволяют им сближаться и образовывать Н-связи. В полинуклеотидной цепочке соседние нуклеотиды связаны между собой через сахар (дезоксирибозу) и остаток фосфорной кислоты. РНК так же, как и ДНК, представляет собой полимер, мономерами которого являются нуклеотиды. Азотистые основания трех нуклеотидов те же самые, что входят в состав ДНК (А, Г, Ц); четвертое – урацил (У) – присутствует в молекуле РНК вместо тимина. Нуклеотиды РНК отличаются от нуклеотидов ДНК и по строению входящего в их состав углевода (рибоза вместо дизоксирибозы).

В цепочке РНК нуклеотиды соединяются путем образования ковалентных связей между рибозой одного нуклеотида и остатком фосфорной кислоты другого. По структуре различаются двух цепочечные РНК. Двух цепочечные РНК являются хранителями генетической информации у ряда вирусов, т.е. выполняют у них функции хромосом. Одно цепочечные РНК осуществляют перенос информации о структуре белков от хромосомы к месту их синтеза и участвуют в синтезе белков.

Существует несколько видов одно цепочечной РНК. Их названия обусловлены выполняемой функцией или местом нахождения в клетке. Большую часть РНК цитоплазмы (до 80-90%) составляет рибосомальная РНК (рРНК), содержащаяся в рибосомах. Молекулы рРНК относительно невелики и состоят в среднем из 10 нуклеотидов. Другой вид РНК (иРНК), переносящие к рибосомам информацию о последовательности аминокислот в белках, которые должны синтезироваться. Размер этих РНК зависит от длины участка ДНК, на котором они были синтезированы. Транспортные РНК выполняют несколько функций. Они доставляют аминокислоты к месту синтеза белка, «узнают» (по принципу комплементарности) триплет и РНК, соответствующий переносимой аминокислоте, осуществляют точную ориентацию аминокислоты на рибосоме.

Жиры и липиды

Жиры представляют собой соединения жирных высокомолекулярных кислот и трехатомного спирта глицерина. Жиры не растворяются в воде – они гидрофобны. В клетке всегда есть и другие сложные гидрофобные жироподобные вещества, называемые липоидами. Одна из основных функций жиров – энергетическая. В ходе расщепления 1 г. жиров до СО 2 и Н 2 О освобождается большое количество энергии – 38,9 кДж (~9,3 ккал). Содержание жира в клетке колеблется в пределах 5-15% от массы сухого вещества. В клетках живой ткани количество жира возрастает до 90%. Главная функция жиров в животном (и отчасти - растительном) мире - запасающая.

При полном окислении 1 г жира (до углекислого газа и воды) выделяется около 9 ккал энергии. (1 ккал = 1000 кал; калория (кал, cal) - внесистемная единица количества работы и энергии, равная количеству теплоты, необходимому для нагревания 1 мл воды на 1 °C при стандартном атмосферном давлении 101,325 кПа; 1 ккал = 4,19 кДж). При окислении (в организме) 1 г белков или углеводов выделяется только около 4 ккал/г. У самых разных водных организмов - от одноклеточных диатомовых водорослей до гигантских акул - жир случит «поплавком», уменьшая среднюю плотность тела. Плотность животных жиров составляет около 0,91-0,95 г/см³. Плотность костной ткани позвоночных близка к 1,7-1.8 г/см³, а средняя плотность большинства других тканей близка к 1 г/см³. Понятно, что жира нужно довольно много, чтобы «уравновесить» тяжелый скелет.

Жиры и липиды выполняют и строительную функцию: они входят в состав клеточных мембран. Благодаря плохой теплопроводности жир способен к защитной функции. У некоторых животных (тюлени, киты) он откладывается в подкожной жировой ткани, образуя слой толщиной до 1 м. Образование некоторых липоидов предшествует синтезу ряда гормонов. Следовательно, этим веществам присуща и функция регуляции обменных процессов.

Клетка является основной элементарной единицей всего живого, поэтому ей присущи все свойства живых организмов: высокоупорядоченное строение, получение энергии извне и ее использование для выполнения работы и поддержания упорядоченности, обмен веществ, активная реакция на раздражения, рост, развитие, размножение, удвоение и передача биологической информации потомкам, регенерация (восстановление поврежденных структур), адаптация к окружающей среде.

Немецкий ученый Т. Шванн в середине XIX века создал клеточную теорию, основные положения которой свидетельствовали о том, что все ткани и органы состоят из клеток; клетки растений и животных принципиально сходны между собой, все они возникают одинаково; деятельность организмов - сумма жизнедеятельности отдельных клеток. Большое влияние на дальнейшее развитие клеточной теории и вообще на учение о клетке оказал великий немецкий ученый Р. Вирхов. Он не только свел воедино все многочисленные разрозненные факты, но и убедительно показал, что клетки являются постоянной структурой и возникают только путем размножения.

Клеточная теория в современной интерпретации включает в себя следующие главные положения: клетка является универсальной элементарной единицей живого; клетки всех организмов принципиально сходны по своему строению, функции и химическому составу; клетки размножаются только путем деления исходной клетки; многоклеточные организмы являются сложными клеточными ансамблями, образующими целостные системы.

Благодаря современным методам исследования были выявлены два основных типа клеток : более сложно организованные, высокодифференцированные эукариотические клетки (растения, животные и некоторые простейшие, водоросли, грибы и лишайники) и менее сложно организованные прокариотические клетки (сине-зеленые водоросли, актиномицеты, бактерии, спирохеты, микоплазмы, риккетсии, хламидии).

В отличие от прокариотической эукариотическая клетка имеет ядро, ограниченное двойной ядерной мембраной, и большое количество мембранных органелл.

ВНИМАНИЕ!

Клетка является основной структурной и функциональной единицей живых организмов, осуществляющей рост, развитие, обмен веществ и энергии, хранящей, перерабатывающей и реализующей генетическую информацию. С точки зрения морфологии клетка представляет собой сложную систему биополимеров, отделенную от внешней среды плазматической мембраной (плазмолеммой) и состоящую из ядра и цитоплазмы, в которой располагаются органеллы и включения (гранулы).

Какие бывают клетки?

Клетки разнообразны по своей форме, строению, химическому составу и характеру обмена веществ.

Все клетки гомологичны, т.е. имеют ряд общих структурных признаков, от которых зависит выполнение основных функций. Клеткам присуще единство строения, метаболизма (обмена веществ) и химического состава.

Вместе с тем различные клетки имеют и специфические структуры. Это связано с выполнением ими специальных функций.

Строение клетки

Ультрамикроскопическое строение клетки:

1 - цитолемма (плазматическая мембрана); 2 - пиноцитозные пузырьки; 3 - центросома клеточный центр (цитоцентр); 4 - гиалоплазма; 5 - эндоплазматическая сеть: а - мембрана зернистой сети; б - рибосомы; 6 - связь перинуклеарного пространства с полостями эндоплазматической сети; 7 - ядро; 8 - ядерные поры; 9 - незернистая (гладкая) эндоплазматическая сеть; 10 - ядрышко; 11 - внутренний сетчатый аппарат (комплекс Гольджи); 12 - секреторные вакуоли; 13 - митохондрия; 14 - липосомы; 15 - три последовательные стадии фагоцитоза; 16 - связь клеточной оболочки (цитолеммы) с мембранами эндоплазматической сети.

Химический состав клетки

В состав клетки входит более 100 химических элементов, на долю четырех из них приходится около 98% массы, это органогены: кислород (65–75%), углерод (15–18%), водород (8–10%) и азот (1,5–3,0%). Остальные элементы подразделяются на три группы: макроэлементы - их содержание в организме превышает 0,01%); микроэлементы (0,00001–0,01%) и ультрамикроэлементы (менее 0,00001).

К макроэлементам относятся сера, фосфор, хлор, калий, натрий, магний, кальций.

К микроэлемен-там - железо, цинк, медь, йод, фтор, алюминий, медь, марганец, кобальт и др.

К ультрамикроэлементам - селен, ванадий, кремний, никель, литий, серебро и до. Несмотря на очень малое содержание, микроэлементы и ультрамикроэлементы играют очень важную роль. Они влияют, главным образом, на обмен веществ. Без них невозможна нормальная жизнедеятельность каждой клетки и организма как целого.

Клетка состоит из неорганических и органических веществ. Среди неорганических наибольшее количество воды. Относительное количество воды в клетке составляет от 70 до 80%. Вода - универсальный растворитель, в ней происходит все биохимические реакции в клетке. При участии воды осуществляется теплорегуляция. Вещества, растворяющиеся в воде (соли, основания, кислоты, белки, углеводы, спирты и др.), называются гидрофильными. Гидрофобные вещества (жиры и жироподобные) не растворяются в воде. Другие неорганические вещества (соли, кислоты, основания, положительные и отрицательные ионы) составляют от 1,0 до 1,5%.

Среди органических веществ преобладают белки (10–20%), жиры, или липиды (1–5%), углеводы (0,2–2,0%), нуклеиновые кислоты (1–2%). Содержание низкомолекулярных веществ не превышает 0,5%.

Молекула белка является полимером, который состоит из большого количества повторяющихся единиц мономеров. Мономеры белка аминокислоты (их 20) соединены между собой пептидными связями, образуя полипептидную цепь (первичную структуру белка). Она закручивается в спираль, образуя, в свою очередь, вторичную структуру белка. Благодаря определенной пространственной ориентации полипептидной цепи возникает третичная структура белка, которая определяет специфичность и биологическую активность молекулы белка. Несколько третичных структур, объединяясь между собой, образуют четвертичную структуру.

Белки выполняют важнейшие функции. Ферменты - биологические катализаторы, увеличивающие скорость химических реакций в клетке в сотни тысяч миллионы раз, являются белками. Белки, входя в состав всех клеточных структур, выполняют пластическую (строительную) функцию. Движения клеток также осуществляют белки. Они обеспечивают транспорт веществ в клетку, из клетки и внутри клетки. Важной является защитная функция белков (антитела). Белки являются одним из источников энергии.Углеводы подразделяются на моносахариды и полисахариды. Последние построены из моносахаридов, являющихся, подобно аминокислотам, мономерами. Среди моносахаридов в клетке наиболее важны глюкоза, фруктоза (содержит шесть атомов углерода) и пентоза (пять атомов углерода). Пентозы входят в состав нуклеиновых кислот. Моносахариды хорошо растворяются в воде. Полисахариды плохо растворяются в воде (в животных клетках гликоген, в растительных - крахмал и целлюлоза. Углеводы являются источником энергии, сложные углеводы, соединенные с белками (гликопротеиды), жирами (гликолипиды), участвуют в образовании клеточных поверхностей и взаимодействиях клеток.

К липидам относятся жиры и жироподобные вещества. Молекулы жиров построены из глицерина и жирных кислот. К жироподобным веществам относятся холестерин, некоторые гормоны, лецитин. Липиды, являющиеся основным компонентом клеточных мембран, выполняют тем самым строительную функцию. Липиды - важнейшие источники энергии. Так, если при полном окислении 1 г белка или углеводов освобождается 17,6 кДж энергии, то при полном окислении 1 г жира - 38,9 кДж. Липиды осуществляют терморегуляцию, защищают органы (жировые капсулы).

ДНК и РНК

Нуклеиновые кислоты являются полимерными молекулами, образованными мономерами нуклеотидами. Нуклеотид состоит из пуринового или пиримидинового основания, сахара (пентозы) и остатка фосфорной кислоты. Во всех клетках существует два типа нуклеиновых кислот: дезоксирибонулеиновая (ДНК) и рибонуклеиновая (РНК), которые отличаются по составу оснований и сахаров.

Пространственная структура нуклеиновых кислот:

(по Б. Албертсу и соавт., с изм.).I - РНК; II - ДНК; ленты - сахарофосфатные остовы; A, C, G, T, U - азотистые основания, решетки между ними - водородные связи.

Молекула ДНК

Молекула ДНК состоит из двух полинуклеотидных цепей, закрученных одна вокруг другой в виде двойной спирали. Азотистые основания обеих цепей соединены между собой комплементарно водородными связями. Аденин соединяется только с тимином, а цитозин - с гуанином (А - Т, Г - Ц). В ДНК записана генетическая информация, которая определяет специфичность синтезируемых клеткой белков, т. е. последовательность аминокислот в полипептидной цепи. ДНК передает по наследству все свойства клетки. ДНК содержится в ядре и митохондриях.

Молекула РНК

Молекула РНК образована одной полинуклеотидной цепью. В клетках существует три типа РНК. Информационная, или мессенджер РНК тРНК (от англ. messenger - «посредник»), которая переносит информацию о нуклеотидной последовательности ДНК в рибосомы (см. ниже). Транспортная РНК (тРНК), которая переносит аминокислоты в рибосомы. Рибосомальная РНК (рРНК), которая участвует в образовании рибосом. РНК содержится в ядре, рибосомах, цитоплазме, митохондриях, хлоропластах.

Состав нуклеиновых кислот.

Клетка - элементарная живая система, основная структурная и функциональная единица организма, способная к самообновлению, саморегуляции и самовоспроизведению.

Жизненные свойства клетки человека

К основным жизненным свойствам клетки относят: обмен веществ, биосинтез, размножение, раздражимость, выделение, питание, дыхание, рост и распад органических соединений.

Химический состав клетки

Основные химические элементы клетки: Кислород (О), Сера (S), Фосфор (Р), Углерод (С), Калий (К), Хлор (Сl), Водород (Н), Железо (Fe), Натрий (Na), Азот (N), Кальций (Са), Магний (Mg)

Органические вещества клетки

Название веществ

Из каких эле-ментов (веществ) состоят

Функции веществ

Углеводы

Углерод, водо-род, кислород.

Основные источники энергии для осуществления всех жиз-ненных процессов.

Углерод, водо-род, кислород.

Входят в состав всех клеточных мембран, служат запасным ис-точником энергии в организме.

Углерод, водород, ки-слород, азот, сера, фосфор.

1. Главный строительный материал клетки;

2. ускоряют течение химических реакций в организме;

3. запасной источник энергии для организма.

Нуклеиновые кислоты

Углерод, водо-род, кисло-род, азот, фосфор.

ДНК - определяет состав бел-ков клетки и передачу наслед-ственных признаков и свойств следующим поколениям;

РНК - образование характерных для данной клетки белков.

АТФ (аденозинтрифосфат)

Рибоза, аденин, фосфорная кислота

Обеспечивает запас энергии, участвует в построении нуклеиновых кислот

Размножение клетки (деление клетки) человека

Размножение клеток в человеческом организме происходит путем непрямого деления. В результате дочерний организм получает такой-же набор хромосом, как материнский. Хромосомы - носители наследственных свойств организма, передающихся от родителей потомству.

Этап размножения (фазы деления)

Характеристика

Подготовительная

Перед делением число хромосом удваивается. Запасается энергия и вещества, необходимые для деления.

Начало деления. Центриоли клеточного центра расходятся к полюсам клетки. Хромосомы утолщаются и укорачиваются. Ядерная оболочка растворяется. Из клеточного центра образуется веретено деления.

Удвоенные хромосомы размещаются в плоскости экватора клетки. К каждой, хромосоме, прикрепляются плотные нити, которые тянутся от центриолей.

Нити сокращаются, и хромосомы расходятся к полюсам клетки.

Четвертая

Конец деления. Делится все содержимое клетки и цитоплазма. Хромосомы удлиняются и становятся неразличимыми. Формируется ядерная оболочка, на теле клетки возникает перетяжка, которая постепенно углубляется, разделяя клетку надвое. Образуются две дочерние клетки.

Строение клетки человека человека

У животной клетки, в отличие от растительной, имеется клеточный центр, яо отсутствуют: плотная клеточная стенка, поры в клеточной стенке, пластиды(хлоропласты, хромопласты, лейкопласты) и вакуоли с клеточным соком.

Клеточные структуры

Особенности строения

Основные функции

Плазматическая мембрана

Билипидныи (жировой) слой, окруженный бел новым 1 слоями

Обмен веществ между клетками и межклеточным веществом

Цитоплазма

Вязкое полужидкое вещество, в котором располагаютсу органоиды клетки

Внутренняя среда клетки. Взаимосвязь всех частей клетки и транспорт питательных веществ

Ядро с ядрышком

Тельце, ограниченное ядерной оболочкой, с хроматином (тип и ДНК). Ядрышко находится внутри ядра, принимает участие в синтезе белков.

Контролирующий центр клетки. Передача информации дочерним клеткам с помощью хромосом при делении

Клеточный центр

Участок более густой цитоплазмы с центриолями (и цилиндричсекие тельца)

Участвует в делении клеток

Эндоплазматическая сеть

Сеть канальцев

Синтез и транспорт питательных веществ

Рибосомы

Плотные тельца, содержащие белок и РНК

В них синтезируется белок

Лизосомы

Округлые тельца, внутри которых находятся ферменты

Расщепляют белки, жиры, углеводы

Митохондрии

Утолщённые тельца с внутренними складками (кристами)

В них находятся,ферменты, при помощи которых пи-тательные вещества расщепляются, а энергия запаса-ется в виде особого вещества - АТФ.

Аппарат Гольджи

С топка плоских мембранных мешочков

Образование лизосом

_______________

Источник информации:

Биология в таблицах и схемах./ Издание 2е, - СПб.: 2004.

Резанова Е.А. Биология человека. В таблицах и схемах./ М.: 2008.


Химические вещества в клетке, особенно их состав, с точки зрения химии разделяют на макро- и микроэлементы. Однако существует еще и группа ультрамикроэлементов, в которую входят химические элементы, процентное соотношение которых составляет 0,0000001%.

Одних химических соединений в клетке больше, других меньше. Однако все основные элементы клетки относятся к группе макроэлентов. Приставка макро- означает много.

Живой организм на атомном уровне не отличается от предметов неживой природы. Он состоит из тех же атомов, что и неживые предметы. Однако количество химических элементов в живом организме, особенно тех, что обеспечивают основные жизненные процессы, намного больше в процентном соотношении.

Химические вещества клетки

Белки

Основными веществами клетки являются белки. Они занимают 50% массы клетки. Белки выполняют множество различных функций в организме живых существ, также белками являются многие другие по своему подобию и функциями вещества.

По своему химическому строению белки – это биополимеры, которые состоят из аминокислот, соединенных пептидными связями. Хочется отметить, что состав белков в основном занимают остатки аминокислот.

Для химического состава белков характерно постоянное среднее количество азота – примерно 16%. Хочется отметить, что под воздействием специфических ферментов, а также в процессе нагревания с кислотами белки поддаются гидролизу. Это одна из главных их особенность.

Углеводы

Углеводы распространены в природе очень широко и отыграют очень важную роль в жизнедеятельности растений и животных. Они берут участие в разных процессах обмена веществ в организме и являются компонентами многих природных соединений.

В зависимости от содержания, структуры и физико-химических свойств, углеводы поделены на две группы: простые – это моносахариды и сложные – продукты конденсации моносахаридов. Среди сложных углеводов также есть две группы: олигосахариды (количество моносахаридных остатков составляет от двух до десяти) и полисахариды (количество моносахаридных остатков составляет более десяти).

Липиды

Липиды – это основной источник энергии для организмов. В составе живых организмов липиды выполняют минимум три главных функции: они являются основными структурными компонентами мембран, являются распространенным энергетическим резервом, а также играют защитную роль в составе покрова животных, растений и микроорганизмов.

Химические вещества в клетке, которые относятся к классу липидов, обладают особенным свойством – они не растворимы в воде и малорастворимые в органических растворителях.

Нуклеиновые кислоты

В составе клеток живых организмов обнаружено два вида жизненно важных нуклеиновых кислот: дезоксирибонуклеиновая кислота (ДНК) и рибонуклеиновая кислота (РНК). Нуклеиновые кислоты – это сложные соединения, которые имеют в составе азот.

В случае полного гидролиза нуклеиновые кислоты расщепляются на более мелкие соединения, а именно на: азотистые основания, углеводы и фосфатную кислоту. В случае неполного гидролиза нуклеиновых кислот создаются нуклеозиды и нуклеотиды. Главная функция нуклеиновых кислот – хранение генетической информации и транспорт биологически активных веществ.

Группа макроэлементов – основной источник жизни клетки

К группе макроэлементов относятся такие основные химические элементы как кислород, углерод, водород, азот, калий, фосфор, сера, магний, натрий, кальций, хлор и другие. Многие из них, например, фосфор, азот, сера входят в состав разных соединений, которые отвечают за жизненные процессы клеток организма. Каждый из этих элементов имеет свою функцию, без которой существование клетки было б невозможным.

  • Кислород, например, входит практически во все органические вещества и соединения клетки. Для многих, особенно аэробных организмов, кислород выполняет функцию окислителя, что в процессе их дыхания обеспечивает клетки этого организма энергией. Самое большое количество кислорода в живых организмах находится в составе молекул воды.
  • Углерод тоже входит в состав многих соединений клетки. Атомы углерода в молекуле СаСО3 составляют основу скелета живых организмов. Более того, углерод регулирует клеточные функции и играет важную роль в процессе фотосинтеза растений.
  • Водород находится в клетке в молекулах воды. Его главная роль в структуре клетки заключается в том, что много микроскопических бактерий окисляют водород для того, чтобы получать энергию.
  • Азот – один из главных составляющих клетки. Его атомы входят в состав нуклеиновых кислот, многих белков и аминокислот. Азот участвует в процессе регуляции кровяного давления в виде N О и выводится из живого организма в составе мочи.

Не менее важное значение для жизни организмов имеют и сера с фосфором. Первая содержится в составе многих аминокислот, поэтому и в белках. А фосфор составляет основу АТФ – основного и самого большого источника энергии живого организма. Более того, фосфор в виде минеральных солей содержится в зубной и костной тканях.

Важное значение в составе клетки организма имеют кальций и магний. Кальций свертывает кровь, поэтому он жизненно необходим живым существам. Также он регулирует много внутриклеточных процессов. Магний участвует в создании ДНК в организме, более того, он является кофактором многих ферментов.

Нужны клетке и такие макроэлементы как натрий с калием. Натрий поддерживает мембранный потенциал клетки, а калий необходим для нервного импульса и нормальной работы сердечных мышц.

Значение микроэлементов для живого организма

Все основные вещества клетки состоят не только из макроэлементов, но еще и из микроэлементов. Сюда относятся цинк, селен, йод, медь и другие. В клетке в составе основных веществ они находятся в мизерных количествах, однако играют важнейшую роль в процессах организма. Селен, например, регулирует много основных процессов, медь является одним из составляющих компонентов многих ферментов, а цинк является главным элементом в составе инсулина – основного гормона поджелудочной железы.

Химический состав клетки — видео