Решение уравнений с логарифмами найти корни примеры. Логарифмическое уравнение: основные формулы и приемы

На уравнениях такого вида многие ученики «зависают». При этом сами задачи отнюдь не являются сложными — достаточно просто выполнить грамотную замену переменной, для чего следует научиться выделять устойчивые выражения.

В дополнение к этому уроку вас ждет довольно объемная самостоятельная работа, состоящая из двух вариантов по 6 задач в каждом.

Метод группировки

Сегодня мы разберем два логарифмических уравнения, одно из которых не решается «напролом» и требует специальных преобразований, а второе... впрочем, не буду рассказывать все сразу. Смотрите видео, скачивайте самостоятельную работу — и учитесь решать сложные задачи.

Итак, группировка и вынесение общих множителей за скобку. Дополнительно я расскажу вам, какие подводные камни несет область определения логарифмов, и как небольшие замечания по области определений могут существенно менять как корни, так и все решение.

Начнем из группировки. Нам нужно решить следующее логарифмическое уравнение:

log 2 x · log 2 (x − 3) + 1 = log 2 (x 2 − 3x )

В первую очередь отметим, что x 2 − 3x можно разложить на множители:

log 2 x (x − 3)

Затем вспоминаем замечательную формулу:

log a fg = log a f + log a g

Сразу же небольшое замечание: данная формула прекрасно работает, когда а, f и g — обычные числа. Но когда вместо них стоят функции, данные выражения перестают быть равноправными. Представьте себе такую гипотетическую ситуацию:

f < 0; g < 0

В этом случае произведение fg будет положительным, следовательно, log a (fg ) будет существовать, а вот log a f и log a g отдельно существовать не будут, и выполнить такое преобразование мы не сможем.

Игнорирование данного факта приведет к сужению области определения и, как следствие, к потере корней. Поэтому прежде чем выполнять такое преобразование, нужно обязательно заранее убедиться, что функции f и g положительные.

В нашем случае все просто. Поскольку в исходном уравнении есть функция log 2 x , то x > 0 (ведь переменная x стоит в аргументе). Также имеется log 2 (x − 3), поэтому x − 3 > 0.

Следовательно, в функции log 2 x (x − 3) каждый множитель будет больше нуля. Поэтому можно смело раскладывать произведение на сумму:

log 2 x log 2 (x − 3) + 1 = log 2 x + log 2 (x − 3)

log 2 x log 2 (x − 3) + 1 − log 2 x − log 2 (x − 3) = 0

На первый взгляд может показаться, что легче не стало. Напротив: количество слагаемых лишь увеличились! Чтобы понять, как действовать дальше, введем новые переменные:

log 2 x = а

log 2 (x − 3) = b

a · b + 1 − a − b = 0

А теперь сгруппируем третье слагаемое с первым:

(a · b − a ) + (1 − b ) = 0

a (1 · b − 1) + (1 − b ) = 0

Заметим, что и в первой, и во второй скобке стоит b − 1 (во втором случае придется вынести «минус» за скобку). Разложим нашу конструкцию на множители:

a (1 · b − 1) − (b − 1) = 0

(b − 1)(а · 1 − 1) = 0

А теперь вспоминаем наше замечательно правило: произведение равно нулю, когда хотя бы один из множителей равен нулю:

b − 1 = 0 ⇒ b = 1;

a − 1 = 0 ⇒ a = 1.

Вспоминаем, что такое b и а. Получим два простейших логарифмических уравнения, в которых останется лишь избавиться от знаков logи приравнять аргументы:

log 2 x = 1 ⇒ log 2 x = log 2 2 ⇒ x 1 =2;

log 2 (x − 3) = 1 ⇒ log 2 (x − 3) = log 2 2 ⇒ x 2 = 5

Мы получили два корня, но это не решение исходного логарифмического уравнения, а лишь кандидаты в ответ. Теперь проверим область определения. Для первого аргумента:

x > 0

Оба корня удовлетворяют первому требованию. Переходим ко второму аргументу:

x − 3 > 0 ⇒ x > 3

А вот здесь уже x = 2 нас не удовлетворяет, зато x = 5 вполне нас устраивает. Следовательно, единственным ответом будет x = 5.

Переходим ко второму логарифмическому равнению. На первый взгляд, оно существенно проще. Однако в процессе его решения мы рассмотрим тонкие моменты, связанные с областью определения, незнание которых существенно усложняет жизнь начинающим ученикам.

log 0,7 (x 2 − 6x + 2) = log 0,7 (7 − 2x )

Перед нами каноническая форма логарифмического уравнения. Ничего преобразовывать не нужно — даже основания одинаковые. Поэтому просто приравниваем аргументы:

x 2 − 6x + 2 = 7 − 2x

x 2 − 6x + 2 − 7 + 2x = 0

x 2 − 4x − 5 = 0

Перед нами приведенное квадратное уравнение, оно легко решается по формулам Виета:

(x − 5) (x + 1) = 0;

x − 5 = 0 ⇒ x = 5;

x + 1 = 0 ⇒ x = −1.

Но эти корни еще не являются окончательными ответами. Нужно найти область определения, поскольку в исходном уравнении присутствуют два логарифма, т.е. учет области определения строго обязателен.

Итак, выпишем область определения. С одной стороны, аргумент первого логарифма должен быть больше нуля:

x 2 − 6x + 2 > 0

С другой — второй аргумент тоже должен быть больше нуля:

7 − 2x > 0

Эти требования должны выполняться одновременно. И вот тут начинается самое интересное. Безусловно, мы можем решить каждое из этих неравенств, затем пересечь их и найти область определения всего уравнения. Но зачем так усложнять себе жизнь?

Давайте заметим одну тонкость. Избавляясь от знаков log, мы приравниваем аргументы. Отсюда следует, что требования x 2 − 6x + 2 > 0 и 7 − 2x > 0 равносильны. Как следствие, любое из двух неравенств можно вычеркнуть. Давайте вычеркнем самое сложное, а себе оставим обычное линейное неравенство:

−2x > −7

x < 3,5

Поскольку мы делили обе части на отрицательное число, знак неравенства поменялся.

Итак, мы нашли ОДЗ без всяких квадратных неравенств, дискриминантов и пересечений. Теперь осталось просто выбрать корни, которые лежат на данном интервале. Очевидно, что нас устроит лишь x = −1, потому что x = 5 > 3,5.

Можно записать ответ: x = 1 является единственным решением исходного логарифмического уравнения.

Выводы из данного логарифмического уравнения следующие:

  1. Не бойтесь раскладывать логарифмы на множители, а потом множители раскладывать на сумму логарифмов. Однако помните, что разбивая произведение на сумму двух логарифмов, вы тем самым сужаете область определения. Поэтому прежде чем выполнять такое преобразование, обязательно проверьте, каковы требования области определения. Чаще всего никаких проблем не возникает, однако лишний раз перестраховаться не помешает.
  2. Избавляясь от канонической формы, старайтесь оптимизировать вычисления. В частности, если от нас требуется, чтобы f > 0 и g > 0, но в самом уравнении f = g , то смело вычеркиваем одно из неравенств, оставляя себе лишь самое простое. Область определения и ответы при этом никак не пострадают, а вот объем вычислений существенно сократится.

Вот, собственно, и все, что я хотел рассказать о группировке.:)

Типичные ошибки при решении

Сегодня мы разберем два типичных логарифмических уравнения, на которых спотыкаются многие ученики. На примере этих уравнения мы увидим, какие ошибки чаще всего допускаются в процессе решения и преобразования исходных выражений.

Дробно-рациональные уравнения с логарифмами

Сразу следует отметить, что это довольно коварный тип уравнений, в которых отнюдь не всегда сразу присутствует дробь с логарифмом где-то в знаменателе. Однако в процессе преобразований такая дробь обязательно возникнет.

При этом будьте внимательны: в процессе преобразований изначальная область определения логарифмов может существенно измениться!

Переходим к еще более жестким логарифмическим уравнениям, содержащим дроби и переменные основания. Чтобы за один короткий урок успеть больше, я не буду рассказывать элементарную теорию. Сразу перейдем к задачам:

4 log 25 (x − 1) − log 3 27 + 2 log x − 1 5 = 1

Посмотрев на это уравнение, кто-то спросит: «При чем здесь дробно-рациональное уравнение? Где в этом уравнении дробь?» Давайте не будем спешить и внимательно посмотрим на каждое слагаемое.

Первое слагаемое: 4 log 25 (x − 1). Основанием логарифма является число, но в аргументе стоит функция от переменной x . С этим мы пока ничего сделать не можем. Идем дальше.

Следующее слагаемое: log 3 27. Вспоминаем, что 27 = 3 3 . Следовательно, весь логарифм мы можем переписать следующим образом:

log 3 27 = 3 3 = 3

Итак, второе слагаемое — это просто тройка. Третье слагаемое: 2 log x − 1 5. Тут тоже не все просто: в основании стоит функция, в аргументе — обычное число. Предлагаю перевернуть весь логарифм по следующей формуле:

log a b = 1/log b a

Такое преобразование можно выполнить только если b ≠ 1. Иначе логарифм, который получится в знаменателе второй дроби, просто не будет существовать. В нашем случае b = 5, поэтому все в порядке:

2 log x − 1 5 = 2/log 5 (x − 1)

Перепишем исходное уравнение с учетом полученных преобразований:

4 log 25 (x − 1) − 3 + 2/ log 5 (x − 1) = 1

В знаменателе дроби у нас стоит log 5 (x − 1), а в первом слагаемом мы имеем log 25 (x − 1). Но 25 = 5 2 , поэтому выносим квадрат из основания логарифма по правилу:

Другими словами, степень в основании логарифма становится дробью спереди. А выражение перепишется так:

4 1/2 log 5 (x − 1) − 3 + 2/ log 5 (x − 1) − 1 = 0

У нас получилось длинное уравнение с кучей одинаковых логарифмов. Введем новую переменную:

log 5 (x − 1) = t;

2t − 4 + 2/t = 0;

А вот это уже дробно-рациональное уравнение, которое решается средствами алгебры 8—9 класса. Для начала разделим все на двойку:

t − 2 + 1/t = 0;

(t 2 − 2t + 1)/t = 0

В скобках стоит точный квадрат. Свернем его:

(t − 1) 2 /t = 0

Дробь равна нулю, когда ее числитель равен нулю, а знаменатель отличен от нуля. Никогда не забывайте про этот факт:

(t − 1) 2 = 0

t = 1

t ≠ 0

Вспоминаем, что такое t :

log 5 (x − 1) = 1

log 5 (x − 1) = log 5 5

Избавляемся от знаков log, приравниваем их аргументы, и получаем:

x − 1 = 5 ⇒ x = 6

Все. Задача решена. Но давайте вернемся к исходному уравнению и вспомним, что там присутствовали сразу два логарифма с переменной x . Поэтому нужно выписать область определения. Поскольку x − 1 стоит в аргументе логарифма, это выражение должно быть больше нуля:

x − 1 > 0

С другой стороны, тот же x − 1 присутствует и в основании, поэтому должен отличаться от единицы:

x − 1 ≠ 1

Отсюда заключаем:

x > 1; x ≠ 2

Эти требования должны выполняться одновременно. Значение x = 6 удовлетворяет обоим требованиям, поэтому является x = 6 окончательным решением логарифмического уравнения.

Переходим ко второй задаче:

Вновь не будем спешить и посмотрим на каждое слагаемое:

log 4 (x + 1) — в основании стоит четверка. Обычное число, и его можно не трогать. Но в прошлый раз мы наткнулись на точный квадрат в основании, который пришлось выносить из-под знака логарифма. Давайте сейчас сделаем то же самое:

log 4 (x + 1) = 1/2 log 2 (x + 1)

Фишка в том, что у нас уже есть логарифм с переменной x , хоть и в основании — он является обратным к логарифму, который мы только что нашли:

8 log x + 1 2 = 8 · (1/log 2 (x + 1)) = 8/log 2 (x + 1)

Следующее слагаемое — log 2 8. Это константа, поскольку и аргументе, и в основании стоят обычные числа. Найдем значение:

log 2 8 = log 2 2 3 = 3

То же самое мы можем сделать и с последним логарифмом:

Теперь перепишем исходное уравнение:

1/2 · log 2 (x + 1) + 8/log 2 (x + 1) − 3 − 1 = 0;

log 2 (x + 1)/2 + 8/log 2 (x + 1) − 4 = 0

Приведем все к общему знаменателю:

Перед нами опять дробно-рациональное уравнение. Введем новую переменную:

t = log 2 (x + 1)

Перепишем уравнение с учетом новой переменной:

Будьте внимательны: на этом шаге я поменял слагаемые местами. В числителе дроби стоит квадрат разности:

Как и в прошлый раз, дробь равна нулю, когда ее числитель равен нулю, а знаменатель отличен от нуля:

(t − 4) 2 = 0 ⇒ t = 4;

t ≠ 0

Получили один корень, который удовлетворяет всем требованиям, поэтому возвращаемся к переменной x :

log 2 (x + 1) = 4;

log 2 (x + 1) = log 2 2 4;

x + 1 = 16;

x = 15

Все, мы решили уравнение. Но поскольку в исходном уравнении присутствовало несколько логарифмов, необходимо выписать область определения.

Так, выражение x + 1 стоит в аргументе логарифма. Поэтому x + 1 > 0. С другой стороны, x + 1 присутствует и в основании, т.е. x + 1 ≠ 1. Итого:

0 ≠ x > −1

Удовлетворяет ли найденный корень данным требованиям? Безусловно. Следовательно, x = 15 является решением исходного логарифмического уравнения.

Напоследок хотел бы сказать следующее: если вы смотрите на уравнение и понимаете, что вам предстоит решать что-то сложное и нестандартное, по старайтесь выделить устойчивые конструкции, которые впоследствии будут обозначены другой переменной. Если же какие-то слагаемые вообще не содержат переменную x , их зачастую можно просто вычислить.

Вот и все, о чем я хотел сегодня рассказать. Надеюсь, этот урок поможет вам в решении сложных логарифмических уравнений. Смотрите другие видеоуроки, скачивайте и решайте самостоятельные работы, и до встречи в следующем видео!

Математика – это больше чем наука , это язык науки.

Датский физик, общественный деятель Нильс Бор

Логарифмические уравнения

К числу типовых задач , предлагаемых на вступительных (конкурсных) испытаниях , являются задачи , связанные с решением логарифмических уравнений. Для успешного решения таких задач необходимо хорошо знать свойства логарифмов и иметь навыки их применения.

В настоящей статье сначала приводятся основные понятия и свойства логарифмов , а затем рассматриваются примеры решения логарифмических уравнений.

Основные понятия и свойства

Первоначально приведем основные свойства логарифмов , использование которых позволяет успешно решать относительно сложные логарифмические уравнения.

Основное логарифмическое тождество записывается в виде

, (1)

К числу наиболее известных свойств логарифмов относятся следующие равенства:

1. Если , , и , то , ,

2. Если , , , и , то .

3. Если , , и , то .

4. Если , , и натуральное число , то

5. Если , , и натуральное число , то

6. Если , , и , то .

7. Если , , и , то .

Более сложные свойства логарифмов формулируются посредством следующих утверждений:

8. Если , , , и , то

9. Если , , и , то

10. Если , , , и , то

Доказательство последних двух свойств логарифмов приведено в учебном пособии автора «Математика для старшеклассников: дополнительные разделы школьной математики» (М.: Ленанд / URSS , 2014).

Также следует отметить , что функция является возрастающей , если , и убывающей , если .

Рассмотрим примеры задач на решение логарифмических уравнений , расположенных в порядке возрастания их сложности.

Примеры решения задач

Пример 1 . Решить уравнение

. (2)

Решение. Из уравнения (2) имеем . Преобразуем уравнение следующим образом: , или .

Так как , то корнем уравнения (2) является .

Ответ: .

Пример 2 . Решить уравнение

Решение. Уравнение (3) равносильно уравнениям

Или .

Отсюда получаем .

Ответ: .

Пример 3 . Решить уравнение

Решение. Из уравнения (4) следует , что . Используя основное логарифмическое тождество (1) , можно записать

или .

Если положить , то отсюда получаем квадратное уравнение , которое имеет два корня и . Однако , поэтому и подходящим корнем уравнения является лишь . Так как , то или .

Ответ: .

Пример 4 . Решить уравнение

Решение. Областью допустимых значений переменной в уравнении (5) являются .

Пусть и . Так как функция на области определения является убывающей , а функция возрастает на всей числовой оси , то уравнение не может иметь более одного корня.

Подбором находим единственный корень .

Ответ: .

Пример 5 . Решить уравнение .

Решение. Если обе части уравнения прологарифмировать по основанию 10, то

Или .

Решая квадратное уравнение относительно , получаем и . Следовательно, здесь имеем и .

Ответ: , .

Пример 6 . Решить уравнение

. (6)

Решение. Воспользуется тождеством (1) и преобразуем уравнение (6) следующим образом:

Или .

Ответ: , .

Пример 7 . Решить уравнение

. (7)

Решение. Принимая во внимание свойство 9, имеем . В этой связи уравнение (7) принимает вид

Отсюда получаем или .

Ответ: .

Пример 8 . Решить уравнение

. (8)

Решение. Воспользуемся свойством 9 и перепишем уравнение (8) в равносильном виде .

Если затем обозначить , то получим квадратное уравнение , где . Так как уравнение имеет только один положительный корень , то или . Отсюда следует .

Ответ: .

Пример 9 . Решить уравнение

. (9)

Решение. Так как из уравнения (9) следует , то здесь . Согласно свойству 10 , можно записать .

В этой связи уравнение (9) будет равносильно уравнениям

Или .

Отсюда получаем корень уравнения (9).

Пример 10 . Решить уравнение

. (10)

Решение. Областью допустимых значений переменной в уравнении (10) являются . Согласно свойству 4 здесь имеем

. (11)

Так как , то и уравнение (11) принимает вид квадратного уравнения , где . Корнями квадратного уравнения являются и .

Поскольку , то и . Отсюда получаем и .

Ответ: , .

Пример 11 . Решить уравнение

. (12)

Решение. Обозначим , тогда и уравнение (12) принимает вид

Или

. (13)

Нетрудно видеть, что корнем уравнения (13) является . Покажем, что данное уравнение других корней не имеет. Для этого разделим обе его части на и получим равносильное уравнение

. (14)

Так как функция является убывающей, а функция возрастающей на всей числовой оси , то уравнение (14) не может иметь более одного корня. Так как уравнения (13) и (14) равносильные, то уравнение (13) имеет единственный корень .

Поскольку , то и .

Ответ: .

Пример 12 . Решить уравнение

. (15)

Решение. Обозначим и . Так как функция убывает на области определения , а функция является возрастающей для любых значений , то уравнение не может иметь боде одного корня. Непосредственным подбором устанавливаем, что искомым корнем уравнения (15) является .

Ответ: .

Пример 13 . Решить уравнение

. (16)

Решение. Используя свойства логарифмов, получаем

Так как , то и имеем неравенство

Полученное неравенство совпадает с уравнением (16) только в том случае, когда или .

Подстановкой значения в уравнение (16) убеждаемся в том , что является его корнем.

Ответ: .

Пример 14 . Решить уравнение

. (17)

Решение. Так как здесь , то и уравнение (17) принимает вид .

Если положить , то отсюда получаем уравнение

, (18)

где . Из уравнения (18) следует: или . Так как , то уравнение имеет один подходящий корень . Однако , поэтому и .

Пример 15 . Решить уравнение

. (19)

Решение. Обозначим , тогда и уравнение (19) принимает вид . Если данное уравнение прологарифмировать по основанию 3, то получим

Или

Отсюда следует, что и . Поскольку , то и . В этой связи и .

Ответ: , .

Пример 16 . Решить уравнение

. (20)

Решение . Введем параметр и перепишем уравнение (20) в виде квадратного уравнения относительно параметра , т.е.

. (21)

Корнями уравнения (21) являются

или , . Так как , то имеем уравнения и . Отсюда получаем и .

Ответ: , .

Пример 17 . Решить уравнение

. (22)

Решение. Для установления области определения переменной в уравнении (22) необходимо рассмотреть совокупность трех неравенств: , и .

Применяя свойство 2 , из уравнения (22) получаем

Или

. (23)

Если в уравнении (23) положить , то получим уравнение

. (24)

Уравнение (24) будем решать следующим образом:

Или

Отсюда следует, что и , т.е. уравнение (24) имеет два корня: и .

Так как , то , или , .

Ответ: , .

Пример 18 . Решить уравнение

. (25)

Решение. Используя свойства логарифмов, преобразуем уравнение (25) следующим образом:

, , .

Отсюда получаем .

Пример 19 . Решить уравнение

. (26)

Решение. Так как , то .

Далее , имеем . Следовательно , равенство (26) выполняется только в том случае , когда обе части уравнения одновременно равны 2.

Таким образом , уравнение (26) равносильно системе уравнений

Из второго уравнения системы получаем

Или .

Нетрудно убедиться , что значение удовлетворяет также и первому уравнению системы.

Ответ: .

Для более глубокого изучения методов решения логарифмических уравнений можно обратиться к учебным пособиям из списка рекомендуемой литературы.

1. Кушнир А.И. Шедевры школьной математики (задачи и решения в двух книгах). – Киев: Астарта , книга 1 , 1995. – 576 с.

2. Сборник задач по математике для поступающих во втузы / Под ред. М.И. Сканави. – М.: Мир и Образование , 2013. – 608 с.

3. Супрун В.П. Математика для старшеклассников: дополнительные разделы школьной программы. – М.: Ленанд / URSS , 2014. – 216 с.

4. Супрун В.П. Математика для старшеклассников: задачи повышенной сложности. – М.: КД «Либроком» / URSS , 2017. – 200 с.

5. Супрун В.П. Математика для старшеклассников: нестандартные методы решения задач. – М.: КД «Либроком» / URSS , 2017. – 296 с.

Остались вопросы?

Чтобы получить помощь репетитора – зарегистрируйтесь .

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Подготовка к итоговому тестированию по математике включает в себя важный раздел - «Логарифмы». Задания из этой темы обязательно содержатся в ЕГЭ. Опыт прошлых лет показывает, что логарифмические уравнения вызвали затруднения у многих школьников. Поэтому понимать, как найти правильный ответ, и оперативно справляться с ними должны учащиеся с различным уровнем подготовки.

Сдайте аттестационное испытание успешно с помощью образовательного портала «Школково»!

При подготовке к единому государственному экзамену выпускникам старших классов требуется достоверный источник, предоставляющий максимально полную и точную информацию для успешного решения тестовых задач. Однако учебник не всегда оказывается под рукой, а поиск необходимых правил и формул в Интернете зачастую требует времени.

Образовательный портал «Школково» позволяет заниматься подготовкой к ЕГЭ в любом месте в любое время. На нашем сайте предлагается наиболее удобный подход к повторению и усвоению большого количества информации по логарифмам, а также по с одним и несколькими неизвестными. Начните с легких уравнений. Если вы справились с ними без труда, переходите к более сложным. Если у вас возникли проблемы с решением определенного неравенства, вы можете добавить его в «Избранное», чтобы вернуться к нему позже.

Найти необходимые формулы для выполнения задачи, повторить частные случаи и способы вычисления корня стандартного логарифмического уравнения вы можете, заглянув в раздел «Теоретическая справка». Преподаватели «Школково» собрали, систематизировали и изложили все необходимые для успешной сдачи материалы в максимально простой и понятной форме.

Чтобы без затруднений справляться с заданиями любой сложности, на нашем портале вы можете ознакомиться с решением некоторых типовых логарифмических уравнений. Для этого перейдите в раздел «Каталоги». У нас представлено большое количество примеров, в том числе с уравнениями профильного уровня ЕГЭ по математике.

Воспользоваться нашим порталом могут учащиеся из школ по всей России. Для начала занятий просто зарегистрируйтесь в системе и приступайте к решению уравнений. Для закрепления результатов советуем возвращаться на сайт «Школково» ежедневно.

Решение логарифмических уравнений. Часть 1.

Логарифмическим уравнением называется уравнение, в котором неизвестное содержится под знаком логарифма (в частности, в основании логарифма).

Простейшее логарифмическое уравнение имеет вид:

Решение любого логарифмического уравнения предполагает переход от логарифмов к выражениям, стоящим под знаком логарифмов. Однако это действие расширяет область допустимых значений уравнения и может привести к появлению посторонних корней. Чтобы избежать появления посторонних корней , можно поступить одним из трех способов:

1. Сделать равносильный переход от исходного уравнения к системе, включающей

в зависимости от того, какое неравенство или проще.

Если уравнение содержит неизвестное в основании логарифма:

то мы переходим к системе:

2. Отдельно найти область допустимых значений уравнения , затем решить уравнение и проверить, удовлетворяют ли найденные решения уравнения.

3. Решить уравнение, и потом сделать проверку: подставить найденные решения в исходное уравнение, и проверить, получим ли мы верное равенство.

Логарифмическое уравнение любого уровня сложности в конечном итоге всегда сводится к простейшему логарифмическому уравнению.

Все логарифмические уравнения можно условно разделить на четыре типа:

1 . Уравнения, которые содержат логарифмы только в первой степени. Они с помощью преобразований и использования приводятся к виду

Пример . Решим уравнение:

Приравняем выражения, стоящие под знаком логарифма:

Проверим, удовлетворяет ли наш корень уравнения:

Да, удовлетворяет.

Ответ: х=5

2 . Уравнения, которые содержат логарифмы в степени, отличной от 1 (в частности, в знаменателе дроби). Такие уравнения решаются с помощью введения замены переменной .

Пример. Решим уравнение:

Найдем ОДЗ уравнения:

Уравнение содержит логарифмы в квадрате, поэтому решается с помощью замены переменной.

Важно! Прежде чем вводить замену, нужно "растащить" логарифмы, входящие в состав уравнения на "кирпичики", используя свойства логарифмов.

При "растаскивании" логарифмов важно очень аккуратно применять свойства логарифмов:

Кроме того, здесь есть еще одно тонкое место, и, чтобы избежать распространенной ошибки, воспользуемся промежуточным равенством: запишем степень логарифма в таком виде:

Аналогично,

Подставим полученные выражения в исходное уравнение. Получим:

Теперь мы видим, что неизвестное содержится в уравнении в составе . Введем замену : . Так как может принимать любое действительное значение, на переменную мы никаких ограничений не накладываем.

Рассмотрим некоторые типы логарифмических уравнений, которые не так часто рассматриваются на уроках математики в школе, но широко используются при составлении конкурсных заданий, в том числе и для ЕГЭ.

1. Уравнения, решаемые методом логарифмирования

При решении уравнений, содержащих переменную и в основании и в показателе степени, используют метод логарифмирования. Если, при этом, в показателе степени содержится логарифм, то обе части уравнения надо логарифмировать по основанию этого логарифма.

Пример 1.

Решить уравнение: х log 2 х+2 = 8.

Решение.

Прологарифмируем левую и правую части уравнения по основанию 2. Получим

log 2 (х log 2 х+2) = log 2 8,

(log 2 х + 2) · log 2 х = 3.

Пусть log 2 х = t.

Тогда (t + 2)t = 3.

t 2 + 2t – 3 = 0.

D = 16. t 1 = 1; t 2 = -3.

Значит log 2 х = 1 и х 1 = 2 или log 2 х = -3 и х 2 =1/8

Ответ: 1/8; 2.

2. Однородные логарифмические уравнения.

Пример 2.

Решить уравнение log 2 3 (х 2 – 3х + 4) – 3log 3 (х + 5) log 3 (х 2 – 3х + 4) – 2log 2 3 (х + 5) = 0

Решение.

Область определения уравнения

{х 2 – 3х + 4 > 0,
{х + 5 > 0. → х > -5.

log 3 (х + 5) = 0 при х = -4. Проверкой определяем, что данное значение х не является корнем первоначального уравнения. Следовательно можно разделить обе части уравнения на log 2 3 (х + 5).

Получим log 2 3 (х 2 – 3х + 4) / log 2 3 (х + 5) – 3 log 3 (х 2 – 3х + 4) / log 3 (х + 5) + 2 = 0.

Пусть log 3 (х 2 – 3х + 4) / log 3 (х + 5) = t. Тогда t 2 – 3 t + 2 = 0. Корни данного уравнения 1; 2. Возвратившись к первоначальной переменной, получим совокупность двух уравнений

Но с учётом существования логарифма нужно рассматривать лишь значения (0; 9]. Значит выражение в левой части принимает наибольшее значение 2 при х = 1. Рассмотрим теперь функцию у = 2 х-1 + 2 1-х. Если принять t = 2 x -1, то она примет вид у = t + 1/t, где t > 0. При таких условиях она имеет единственную критическую точку t = 1. Это точка минимума. У vin = 2. И достигается он при х = 1.

Теперь очевидно, что графики рассматриваемых функций могут пересекаться лишь один раз в точке (1; 2). Получается, что х = 1 единственный корень решаемого уравнения.

Ответ: х = 1.

Пример 5. Решить уравнение log 2 2 х + (х – 1) log 2 х = 6 – 2х

Решение.

Решим данное уравнение относительно log 2 х. Пусть log 2 х = t. Тогда t 2 + (х – 1) t – 6 + 2х = 0.

D = (х – 1) 2 – 4(2х – 6) = (х – 5) 2 . t 1 = -2; t 2 = 3 – х.

Получим уравнение log 2 х = -2 или log 2 х = 3 – х.

Корень первого уравнения х 1 = 1/4.

Корень уравнения log 2 х = 3 – х найдём подбором. Это число 2. Этот корень единственный, так как функция у = log 2 х возрастающая на всей области определения, а функция у = 3 – х – убывающая.

Проверкой легко убедится в том, что оба числа являются корнями уравнения

Ответ:1/4; 2.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.