При мейозе образуются. Краткое описание стадий и схемы деления клеток посредством мейоза

Мейоз (от греч. meiosis - уменьшение) - процесс деления клеточного ядра с образованием четырех дочерних ядер, каждое из которых содержит вдвое меньше хромосом, чем исходное ядро. Мейоз - редукционное деление: происходит уменьшение числа хромосом в клетке с диплоидного (2 n) до гаплоидного (n). Мейоз сопровождает образование гамет у животных и образование спор у растений. В результате мейоза получаются гаплоидные ядра, при слиянии которых во время оплодотворения восстанавливается диплоидный набор хромосом

Мейоз (схема). В результате мейоза возникают четыре гаметы с различающимися между собой гаплоидными наборами хромосом (Harnden , 1965).

Мейоз включает два последовательных деления . В каждом мейотическом делении выделяют четыре стадии: профазу, метафазу, анафазу и телофазу.

Первое мейотическое деление называют редукционным. В результате из одной клетки с диплоидным набором хромосом образуются две с гаплоидным набором.

Профаза I - профаза первого мейотического деления - самая продолжительная. Ее условно делят на пять стадий: лептотену, зиготену, пахитену, диплотену и диакинез.

Первая стадия - лептотена - характеризуется увеличением ядра. В ядре виден диплоидный набор хромосом. Хромосомы представляют собой длинные, тонкие нити. Каждая хромосома состоит из двух хроматид. Хроматиды имеют хромомерное

строение. Начинается спирализация хромосом.

Во время второй стадии профазы 1 - го мейотического деления - зиготене -происходит конъюгация гомологичных хромосом. Гомологичными называют хромосомы, имеющие одинаковую форму и размер: одна из них получена от матери, другая от отца. Гомологичные хромосомы притягиваются и прикладываются друг к другу по всей длине. Центромера одной из парных хромосом точно прилегает к центромере другой, и каждая хроматида прилегает к гомологичной хроматиде

Третья стадия - пахитена - стадия толстых нитей. Конъюгирующие хромосомы тесно прилегают друг к другу. Такие сдвоенные хромосомы называют бивалентами. Каждый бивалент состоит из четверки (тетрады) хроматид. Число бивалентов равно гаплоидному набору хромосом. Происходит дальнейшая спирализация. Тесный контакт между хроматидами дает возможность обмениваться идентичными участками в гомологичных хромосомах. Это явление называется кроссинговер (англ. crossing over - перекрест).

Четвертая стадия - диплотена - характеризуется возникновением сил отталкивания. Хромосомы, составляющие биваленты, начинают отходить друг от друга. Расхождение начинается в области центромер. Хромосомы соединены между собой в нескольких точках. Эти точки называют хиазмами (от греч. chiasma -перекрест), т. е. местами, где произойдет кроссинговер. В каждой хиазме осуществляется обмен участками хроматид. Хромосомы спирализуются и укорачиваются.

Пятая стадия - диакинез - характеризуется максимальной спирализацией, укорочением и утолщением хромосом. Отталкивание хромосом продолжается, но они остаются соединенными в биваленты своими концами. Ядрышко и ядерная оболочка растворяются. Центриоли расходятся к полюсам.

Таким образом, в профазе 1 - го мейотического деления происходят три основных процесса:

1) конъюгация гомологичных хромосом;

2) образование бивалентов хромосом или тетрад хроматид;

3) кроссинговер.

Метафаза I . В метафазе первого мейотического деления биваленты хромосом располагаются по экватору клетки, образуя метафазную пластинку. К ним прикрепляются нити веретена деления.

Анафаза I . В анафазе первого мейотического деления к полюсам клетки расходятся хромосомы, а не хроматиды. В дочерние клетки попадают только по одной из пары гомологичных хромосом.

Телофаза I . В телофазе первого мейотического деления число хромосом в каждой клетке становится гаплоидным. Хромосомы состоят из двух хроматид. Вследствие кроссинговера при образовании хиазм, хроматиды генетически не однородны. На короткое время образуется ядерная оболочка, хромосомы

деспирализуются, ядро становится интерфазным. Затем у животной клетки начинается деление цитоплазмы, а у растительной клетки формирование клеточной стенки. У многих растений нет телофазы I , клеточная стенка не образуется, нет интерфазы II , клетки сразу переходят из анафазы I в профазу II .

Интерфаза II. Эта стадия есть только у животных клеток. Во время интерфазы между первым и вторым делением в S период не происходит редупликация молекул

Второе мейотическое деление называют эквационным. Оно похоже на митоз. Из хромосом, имеющих две хроматиды, образуются хромосомы, состоящие из одной хроматиды.

Профаза II . В профазе второго мейотического деления хромосомы утолщаются и укорачиваются. Ядрышко и ядерная оболочка разрушаются. Образуется веретено деления.

Метафаза II . В метафазе второго мейотического деления хромосомы выстраиваются вдоль экватора. Нити ахроматинового веретена отходят к полюсам. Образуется метафазная пластинка.

Анафаза II . В анафазе второго мейотического деления центромеры делятся и тянут за собой к противоположным полюсам отделившиеся друг от друга хроматиды, называемые хромосомами.

Телофаза II, В телофазе второго мейотического деления хромосомы деспирализуются, становятся невидимыми. Нити веретена исчезают. Вокруг ядер формируется ядерная оболочка. Ядра содержат гаплоидный набор хромосом. Происходит деление цитоплазмы и образование клеточной стенки у растений. Из одной исходной клетки образуются четыре гаплоидных клетки.

ЗНАЧЕНИЕ МЕЙОЗА

1. Поддержание постоянства числа хромосом. Если бы не возникало редукции числа хромосом при гаметогенезе, и половые клетки имели гаплоидный набор хромосом, то из поколения в поколение возрастало бы их число.

2. При мейозе образуется большое число новых комбинаций негомологичных хромосом.

3. В процессе кроссинговера имеют место рекомбинации генетического
материала.

Практически все хромосомы, попадающие в гаметы, содержат участки, происходящие как первоначально от отцовской, так и от материнской хромосомы. Этим достигается большая степень перекомбинации наследственного материала. В этом одна из причин изменчивости организмов, дающая материал для отбора.

Биологическое значение мейоза : благодаря мейозу про­исходит редукция числа хромосом. Из одной диплоидной клетки образуется 4 гаплоидных.

Благодаря мейозу обра­зуются генетически различные клетки (в том числе гаметы) , т. к. в процессе мей­оза трижды происходит перекомбинация генетического материала:

1) за счёт кроссинговера;

2) за счёт случайного и независимо­го расхождения гомологичных хромосом;

3) за счёт случайного и независимо­го расхождения кроссоверных хроматид.

Первое и второе деление мейоза складываются из тех же фаз, что и митоз, но сущность изменений в наследственном аппарате другая.

Профаза 1 . (2n4с) Самая продолжительная и сложная фаза мейоза. Состоит из ряда последовательных стадий. Гомо­логичные хромосомы начинают притягиваться друг к другу сходными участками и конъюгируют.

Конъюгацией называют процесс тесного сближения гомологичных хромо­сом. Пару конъюгирующих хромосом называют бивален­том. Биваленты продолжают укорачиваться и утолщать­ся. Каждый бивалент образован четырьмя хроматидами. Поэтому его называют тетрадой.

Важнейшим событием является кроссинговер – обмен участками хромосом. Кроссинговер приводит к первой во время мейоза реком­бинации генов.

В конце профазы 1 формируется веретено деления, исчезает ядерная оболочка. Биваленты перемещаются в экватори­альную плоскость.

Метафаза 1. (2n; 4с) Заканчивается формирование веретена деления. Спирализация хромосом максимальна. Биваленты располагаются в плоскости экватора. Причем центромеры гомологичных хромосом обращены к разным полюсам клетки. Расположение бивалентов в экваториаль­ной плоскости равновероятное и случайное, то есть каждая из отцовских и материнских хромосом может быть повер­нута в сторону того или другого полюса. Это создает пред­посылки для второй за время мейоза рекомбинации генов.

Анафаза 1. (2n; 4с) К полюсам расходятся целые хро­мосомы, а не хроматиды, как при митозе. У каждого полюса оказывается половина хромосомного набора. Причем пары хромосом расходятся так, как они располагались в плоскости экватора во время метафазы. В результате возникают самые разнообразные сочетания от­цовских и материнских хромосом, происходит вторая рекомбинация генетического материала.

Телофаза 1. (1n; 2с) У животных и некоторых растений хроматиды деспирализуются, вокруг них формируется ядерная оболочка. Затем происходит деление цитоплазмы (у животных) или образуется разделяющая клеточная стен­ка (у растений). У многих растений клетка из анафазы 1 сразу же переходит в профазу 2.

Второе деление мейоза

Интерфаза 2. (1n; 2с) Харак­терна только для животных клеток. Репликация ДНК не происходит. Вторая стадия мейоза включает также профазу, метафазу, анафазу и телофазу.

Профаза 2. (1n; 2с) Хромосомы спирализуются, ядер­ная мембрана и ядрышки разрушаются, центриоли, если они есть, перемещаются к полюсам клетки, формируется веретено деления.

Метафаза 2. (1n; 2с) Формируются метафазная пластинка и веретено деления, нити веретена деления прикреп­ляются к центромерам.

Анафаза 2. (2n; 2с) Центромеры хромосом делятся, хроматиды становятся самостоятельными хромосомами, и нити веретена деления растягивают их к полюсам клетки. Число хромосом в клетке становится диплоидным, но на каждом полюсе формируется гаплоидный набор. Поскольку в метафазе 2 хроматиды хромосом располагаются в плоскости экватора случайно, в анафазе происходит третья рекомбинация генетического материала клетки.

Телофаза 2. (1n; 1с) Нити веретена деления исчезают, хромосомы деспирализуются, вокруг них восстанавливается ядерная оболочка, делится цитоплазма.

Таким образом, в результате двух последовательных делений мейоза диплоидная клетка дает начало четырём дочерним, генетически различным клеткам с гаплоидным набором хромосом.

Задача 1.

Хромосомный набор соматических клеток цветкового растения N равен 28. Определите хромосомный набор и число молекул ДНК в клетках семязачатка перед началом мейоза, в метафазе мейоза I и метафазе мейоза II. Объясните, какие процессы происходят в эти периоды и как они влияют на изменения числа ДНК и хромосом.

Решение: В соматических клетках 28 хромосом, что соответствует 28 ДНК.

Фазы мейоза

Число хромосом

Количество ДНК

Ин­терфаза 1 (2п4с)

Профаза 1 (2n4с)

Метафаза 1 (2n4с)

Анафаза 1 (2n4с)

Телофаза 1 (1n2с)

Интерфаза 2 (1n2с)

Профаза 2 (1n2с)

Метафаза 2 (1n2с)

Анафаза 2 (2n2с)

Телофаза 2 (1n1с)

  1. Перед началом мейоза количество ДНК – 56, так как оно удвоилось, а число хромосом не изменилось – их 28.
  2. В метафазе мейоза I количество ДНК – 56, число хромосом – 28, гомологичные хромосомы попарно располагаются над и под плоскостью экватора, веретено деления сформировано.
  3. В метафазе мейоза II количество ДНК – 28, хромосом – 14, так как после редукционного деления мейоза I число хромосом и ДНК уменьшилось в 2 раза, хромосомы располагаются в плоскости экватора, веретено деления сформировано.

Задача 2.

Хромосомный набор соматических клеток пшеницы равен 28. Определите хромосомный набор и число молекул ДНК в клетках семязачатка перед началом мейоза, в анафазе мейоза I и анафазе мейоза II. Объясните, какие процессы происходят в эти периоды и как они влияют на изменения числа ДНК и хромосом.

Задача 3.

Для соматической клетки животного характерен диплоидный набор хромосом. Определите хромосомный набор (n) и число молекул ДНК (с) в клетке в профазе мейоза I и метафазе мейоза II. Объясните результаты в каждом случае.

Задача 4.

Хромосомный набор соматических клеток пшеницы равен 28. Определите хромосомный набор и число молекул ДНК в клетке семязачатка в конце мейоза I и мейоза II. Объясните результаты в каждом случае.

Задача 5.

Хромосомный набор соматических клеток крыжовника равен 16. Определите хромосомный набор и число молекул ДНК в телофазе мейоза I и анафазе мейоза II. Объясните результаты в каждом случае.

Задача 6.

В соматических клетках дрозофилы содержится 8 хромосом. Определите, какое число хромосом и молекул ДНК содержится при гаметогенезе в ядрах перед делением в интерфазе и в конце телофазы мейоза I.

Задача 7.

Хромосомный набор соматических клеток пшеницы равен 28. Определите хромосомный набор и число молекул ДНК в ядре (клетке) семязачатка перед началом мейоза I и мейоза II. Объясните результаты в каждом случае.

Задача 8.

Хромосомный набор соматических клеток пшеницы равен 28. Определите хромосомный набор и число молекул ДНК в ядре (клетке) семязачатка перед началом мейоза I и в метафазе мейоза I. Объясните результаты в каждом случае.

Задача 9.

В соматических клетках дрозофилы содержится 8 хромосом. Определите, какое число хромосом и молекул ДНК содержится при гаметогенезе в ядрах перед делением в интерфазу и в конце телофазы мейоза I. Объясните, как образуется такое число хромосом и молекул ДНК.

1. Перед началом деления число хромосом = 8, число молекул ДНК = 16 (2n4с); в конце телофазы мейоза I число хромосом = 4, число молекул ДНК = 8.

2. Перед началом деления молекулы ДНК удваиваются, но число хромосом не изменяется, потому что каждая хромосома становится двухроматидной (состоит из двух сестринских хроматид).

3. Мейоз – редукционное деление, поэтому число хромосом и молекул ДНК уменьшается вдвое.

Задача 10.

У крупного рогатого скота в соматических клетках 60 хромосом. Каково будет число хромосом и молекул ДНК в клетках семенников в интерфазе перед началом деления и после деления мейоза I?

1. В интерфазе перед началом деления: хромосом – 60, молекул ДНК – 120; после мейоза I: хромосом – 30, ДНК – 60.

2. Перед началом деления молекулы ДНК удваиваются, их число увеличивается, а число хромосом не изменяется – 60, каждая хромосома состоит из двух сестринских хроматид.

3) Мейоз I – редукционное деление, поэтому число хромосом и молекул ДНК уменьшается в 2 раза.

Задача 11.

Какой хромосомный набор характерен для клеток пыльцевого зерна и спермиев сосны? Объясните, из каких исходных клеток и в результате какого деления образуются эти клетки.

1. Клетки пыльцевого зерна сосны и спермии имеют гаплоидный набор хромосом – n.

2. Клетки пыльцевого зерна сосны развиваются из гаплоидных спор МИТОЗОМ.

3. Спермии сосны развиваются из пыльцевого зерна (генеративной клетки) МИТОЗОМ.

Мейоз - это способ непрямого деления пер­вичных половых клеток (2п2с), в результате кото­рого образуются гаплоидные клетки (lnlc), чаще всего половые.

В отличие от митоза, мейоз состоит из двух последовательных делений клетки, каждому из которых предшествует интерфаза (рис. 2.53). Первое деление мейоза (мейоз I) называется редук­ционным, так как при этом количество хромосом уменьшается вдвое, а второе деление (мейозII) - эквационным, так как в его процессе количество хромосом сохраняется (см. табл. 2.5).

Интерфаза I протекает подобно интерфазе митоза. Мейоз I делится на четыре фазы: профа­зу I, метафазу I, анафазу I и телофазу I. В профа­зе I происходят два важнейших процесса - конъ­югация и кроссинговер. Конъюгация - это процесс слияния гомологичных (парных) хромосом по всей длине. Образовавшиеся в процессе конъюгации пары хромосом сохраняются до конца метафазы I.

Кроссинговер - взаимный обмен гомологичными участками го­мологичных хромосом (рис. 2.54). В результате кроссинговера хро­мосомы, полученные организмом от обоих родителей, приобретают новые комбинации генов, что обусловливает появление генетически разнообразного потомства. В конце профазы I, как и в профазе ми­тоза, исчезает ядрышко, центриоли расходятся к полюсам клетки, а ядерная оболочка распадается.

В метафазе I пары хромосом выстраиваются по экватору клетки, к их центромерам прикрепляются микротрубочки веретена деления.

В анафазе I к полюсам расходятся целые гомологичные хромосомы, состоящие из двух хро­матид.

В телофазе I вокруг скоплений хромосом у полюсов клетки образуются ядерные оболочки, формируются ядрышки.

Цитокинез I обеспечивает разделение цитоплазм дочерних клеток.

Образовавшиеся в результате мейоза I дочерние клетки (1n2с) генетически разнородны, по­скольку их хромосомы, случайным образом разошедшиеся к полюсам клетки, содержат неодина­ковые гены.

Интерфаза II очень короткая, так как в ней не происходит удвоения ДНК, то есть отсутствует S-период.

Мейоз II также делится на четыре фазы: профазу II, метафазу II, анафазу II и телофазу II. В профазе II протекают те же процессы, что и в профазе I, за исключением конъюгации и кроссинговера.

В метафазе II хромосомы располагаются вдоль экватора клетки.

В анафазе II хромосомы расщепляются в центромерах и к полюсам растягиваются уже хроматиды.

В телофазе II вокруг скоплений дочерних хромосом формируются ядерные оболочки и ядрышки.

После цитокинеза II генетическая формула всех четырех дочерних клеток - 1n1c, однако все они имеют различный набор генов, что является результатом кроссинговера и случайного со­четания хромосом материнского и отцовского организмов в дочерних клетках.

Сопровождающееся уменьшением числа хромосом вдвое. Он состоит из двух последовательно идущих деле­ний, имеющих те же фазы, что и митоз. Однако, как показано в таблице «Сравнение митоза и мейоза» , продолжительность отдельных фаз и происходящие в них процессы значительно отличаются от процессов, происходящих при митозе.

Эти отличия в основном состоят в следующем.

В мейозе профаза I более продолжительна. В ней происходит конъюгация (соединение гомологичных хромосом) и обмен генетической информацией . В анафазе I центроме­ры , скрепляющие хроматиды, не делятся , а к полюсам отходит одна из гомологмейоза митоза и ичных хромосом. Интерфаза перед вторым делением очень короткая , в ней ДНК не синтезируется . Клетки (галиты ), образующиеся в результате двух мейотических делений, содержат гаплоидный (одинарный) набор хромосом. Диплоидность восстанавливается при слиянии двух клеток - материнской и отцовской. Опло­дотворенную яйцеклетку называют зиготой .

Митоз и его фазы

Митоз, или непрямое деление , наиболее широко рас­пространен в природе. Митоз лежит в основе деления всех неполовых клеток (эпителиальных, мышечных, нервных, костных и др.). Митоз состоит из четырех последователь­ных фаз (см. далее таблицу). Благодаря митозу обеспечи­вается равномерное распределение генетической информа­ции родительской клетки между дочерними. Период жизни клетки между двумя митозами называют интерфазой . Она в десятки раз продолжительнее митоза. В ней совершается ряд очень важных процессов, предшествующих делению клетки: синтезируются молекулы АТФ и белков , удваивается каждая хромосома, образуя две сестринские хроматиды , скрепленные общей центромерой , увеличивается число основных органоидов цитоплазмы.

В профазе спиралируются и вследствие этого утолща­ются хромосомы , состоящие из двух сестринских хроматид, удерживаемых вместе центромерой. К концу профазы ядерная мембрана и ядрышки исчезают и хромосомы рас­средоточиваются по всей клетке, центриоли отходят к полюсам и образуют веретено деления . В метафазе проис­ходит дальнейшая спирализация хромосом. В эту фазу они наиболее хорошо видны. Их центромеры располагаются по экватору. К ним прикрепляются нити веретена деления.

В анафазе центромеры делятся, сестринские хроматиды отделяются друг от друга и за счет сокращения нитей веретена отходят к противоположным полюсам клетки.

В телофазе цитоплазма делится, хромосомы раскручи­ваются, вновь образуются ядрышки и ядерные мембраны. В животных клетках цитоплазма перешнуровывается, в растительных - в центре материнской клетки образуется перегородка. Так из одной исходной клетки (материнской) образу­ются две новые дочерние.

Таблица - Сравнение митоза и мейоза

Фаза Митоз Мейоз
1 деление 2 деление
Интерфаза

Набор хромосом 2n.

Идет интенсивный синтез белков, АТФ и других органических веществ.

Удваиваются хромосомы, каждая оказывается состоящей из двух сестринских хроматид, скрепленных общей центромерой.

Набор хромосом 2n Наблюдаются те же процессы, что и в митозе, но более продолжительна, особенно при обра­зовании яйцеклеток. Набор хромосом гаплоидный (n). Синтез органических веществ отсутствует.
Профаза Непродолжительна, происходит спирализация хро­мосом, исчезают ядерная оболочка, ядрышко, образуется веретено деления. Более длительна. В начале фазы те же процессы, что и в митозе. Кроме того, происходит конъюгация хромосом, при которой гомологичные хромосомы сближаются по всей длине и скру­чиваются. При этом может происходить обмен генетической информацией (перекрест хромосом) - кроссинговер . Затем хромосомы расходятся. Короткая; те же процессы, что и в митозе, но при n хромосом.
Метафаза Происходит дальнейшая спирализация хромосом, их центромеры располагаются по экватору. Происходят процессы, аналогичные тем, что и в митозе.
Анафаза Центромеры, скрепляющие се­стринские хроматиды, делятся, каждая из них становится новой хромосомой и отходит к противоположным полюсам. Центромеры не делятся. К противоположным полюсам отходит одна из гомологичных хро­мосом, состоящая из двух хроматид, скрепленных общей центромерой. Происходит то же, что и в митозе, но при n хромосом.
Телофаза Делится цитоплазма, образуются две дочерние клетки, каждая с диплоидным набором хромосом. Исчезает веретено деления, формируются ядрышки. Длится недолго Гомологичные хро­мосомы попадают в разные клетки с гаплоидным набором хромосом. Цитоплазма делится не всегда. Делится цитоплазма. После двух мейотических делений образуется 4 клетки с гаплоидным набором хромосом.

Таблица сравнения митоза и мейоза.

Профаза первого деления мейоза является чрезвычайно длительным процессом. Ее длительность у разных живых организмов составляет от нескольких дней до нескольких десятков лет. В связи с этим принято условно делить ее на несколько фаз (лептотена, зиготена, пахитена, диплотена, диакинез), во время которых происходят различные события. Важно помнить, что эти фазы четко не разграничены и события одной фазы плавно перетекают в другую.
Во время Профазы1 происходят, среди прочих, события, имеющие огромное биологическое значение. Например, это конъюгация, взаимное соединение гомологичных, удвоенных в результате репликации хромосом, при этом образуются хромосомные комплексы, состоящие из четырех хроматид. Хроматиды соединены вместе с помощью специальной структуры — синаптонемного комплекса. Во время профазы 1 осуществляется и обмен участками между хроматидами гомологичных хромосом (но не между сестринскими хроматидами одного гомолога) — кроссинговер. В процессе профазы 1 происходит синтез примерно 1,5% хромосомной ДНК. Кроме того, хромосомы, в которых в течение этой фазы сохраняются не полностью упакованные, а значит, функциональные участки, продолжают активно синтезировать РНК и регулировать биосинтез белка.

  • Лептотена

  • Аудиофрагмент

  • Лептотена — стадия тонких нитей (хромосом). В начале лептотены происходит компактизация хроматиновых нитей и их превращение в хромосомы. Однако этот процесс не заканчивается. Длина каждой хроматиновой нити в конце этой стадии на 1-2 порядка длиннее, чем у гиперспирализованных хромосом в метафазе1. Это имеет большое биологическое значение, поскольку, не полностью упакованные участки ДНК сохраняют функциональную активность в течение всей профазы1.

    Это позволяет, во-первых, обеспечивать белковым синтезом сложнейшие события во время коньюгации гомологичных хромосом, формирования и разрушения хиазм и кроссинговера. Во-вторых, при овогенезе - создать запас питательных веществ для будущей зиготы.

    Специфическое для каждого вида расположение гиперспирализованных участков - хромомер - на тонких хромосомах, позволяет составлять морфологические карты хромосом, которые используются в цитологическом анализе.

    Уже во время лептотены появляются признаки важнейшего процесса профазы1 - коньюгации гомологичных хромосом, основные события которого происходят во время зиготены.

  • Зиготена

  • Аудиофрагмент

  • Зиготена — стадия конъюгации гомологичных хромосом (синапсис). При этом гомологичные хромосомы (уже двойные после S-периода интерфазы) сближаются и образуют новый хромосомный ансамбль, никогда до этого не встречающийся при клеточном делении, — бивалент. Биваленты — это парные соединения удвоенных гомологичных хромосом, т.е. каждый бивалент состоит из четырех хроматид. Конечная цель формирования бивалентов - это совместное прохождение парой гомологичных хромосом метафазы1 для последующего точного попадания гомологичных хромосом в разные дочерние клетки.

    Главный вопрос до конца до сих пор не понятого процесса коньюгации - как в пространстве ядра хромосомы находят своего специфического гомолога?

    По-видимому, для этого узнавания особое значение имеют участки zДНК, равномерно распределенные по всей длине хромосомы. Расположение этих участков специфично для каждой пары гомологичных хромосом. Репликация zДНК происходит во время зиготены, ингибирование этой репликации (а это всего 0,3% от всей ДНК клетки) останавливает коньюгацию и мейоз. Эти факты свидетельствуют об особой роли zДНК в профазе1.

    Сближение гомологичных хромосом заканчивается формированием синаптонемного комплекса.

  • Синаптонемный комплекс

  • Аудиофрагмент

  • Синаптонемный комплекс встречается практически у всех представителей эукариот, которые обладают половым процессом. Он обнаружен у простейших, водорослей, низших и высших грибов, у высших растений и у животных. Объединение гомологов чаще всего начинается в теломерах и центромерах. В этих местах, а позднее и в других по всей длине соединяющихся хромосом происходит сближение осевых тяжей на расстояние около 100 нм. По своей морфологии синаптонемный комплекс имеет вид трехслойной ленты, состоящей из двух боковых компонентов - тяжей (толщиной 30-60 нм), и центрального осевого элемента (толщиной 10-40 нм); боковые компоненты отстоят друг от друга на 60-120 нм, общая ширина комплекса 160-240 нм. Материал хромосом располагается снаружи от боковых элементов. Каждый боковой элемент связан с петлями двух сестринских хроматид одного гомолога. Большая часть ДНК этих хроматид находится вне синаптонемного комплекса, и лишь менее 5% геномной ДНК входит в его состав, прочно ассоциируясь с белками. В состав этой ДНК входят уникальные и умеренно повторяющиеся последовательности нуклеотидов. Белковый состав синаптонемного комплекса сложен, он состоит более чем из десяти мажорных белков с молекулярными массами от 26 до 190 кДа.

  • Пахитена

  • Аудиофрагмент

  • Пахитена — стадия толстых нитей. Благодаря полной конъюгации гомологов профазные хромосомы как бы увеличились в толщине. Число таких толстых пахитенных хромосом гаплоидно (n), но они состоят из двух объединившихся гомологов, каждый из которых имеет по две сестринские хроматиды. Следовательно, и здесь количество ДНК равно 4с, а число хроматид — 4n.

    Между гомологичными хроматидами (хроматидами разных хромосом) начинают образовываться временные связи, которые многократно перекрещивают бивалент в разных точках - образуются хиазмы.

    На этой стадии происходит второе, чрезвычайно важное событие, характерное для мейоза, — кроссинговер, взаимный обмен идентичными участками по длине гомологических хромосом. Генетическим следствием кроссинговера является рекомбинация сцепленных генов. Здесь возникают отличные от исходных хромосомы, содержащие отдельные участки, пришедшие от их гомологов. Морфологически этот процесс в пахитене уловить нельзя.

    В пахитене также происходит синтез небольшого количества ДНК (всего около 1% от всей ДНК клетки), отличающейся тем, что она содержит повторяющиеся последовательности нуклеотидов. Но этот синтез репаративен, в результате его не образуются дополнительные или недостающие количества ДНК, а происходит восстановление утраченных.

    Весь процесс объединения и обмена между ДНК несестринских хроматид гомологов можно представить следующим образом. По длине хромосомы разбросаны участки повторяющихся последовательностей ДНК, которые при разрывах с помощью специальных ферментов легко могут образовать гибридные молекулы. Сшивание и восстановление целостности молекул с помощью специальных репаративных ферментов приводят к включению предшественников в ДНК на стадии пахитены. По всей вероятности, в этом процессе принимает участие так называемый рекомбинационный узелок — большой белковый ансамбль величиной около 90 нм. Он располагается в синаптонемном комплексе между гомологичными хромосомами, его расположение совпадает с местами хиазм.